Ornithogenic Ecosystems in the Maritime Antarctic — Formation, Development and Disintegration

In memory of Andrzej Myrcha
  • A. Tatur
Part of the Ecological Studies book series (ECOLSTUD, volume 154)

Abstract

Antarctic sea vertebrates — seals, penguins, flying birds — periodically use the Antarctic coast for resting, moulting, breeding and, in the case of flying birds, hunting. Consequently, the visited land is manured, creating new conditions for development of terrestrial biota. The formation, duration and disintegration of manured terrestrial ecosystems have been strongly related to geological events. Palaeoclimate deterioration on the Eocene/Oligocene boundary created a new polar environment with the structure of marine palaeoecosystems comparable to the present one. Quaternary climate fluctuations determined the size, shape, position and lasting time of the ice-free patches of land, and this regulated access of sea animals to the land, and affected the intensity of land manuring.

Keywords

Antarctic Peninsula South Shetland Island Giant Petrel Nest Place Storm Petrel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen SE, Heal OW (1970) Soils of the maritime Antarctic zone. In: Holdgate MW (ed) Antarctic ecology, vol 2. Academic Press, New York, pp 693–701Google Scholar
  2. Altschuler ZS (1973) The weathering of phosphate deposits — geochemical and environmental aspects. In: Griffith EJ, Beeton A, Spencer JM, Michell DT (eds) Environmental phosphorus handbook. Wiley, London, pp 33–96Google Scholar
  3. Anderson JB (1990) Marine record of Late Quaternary glacial-interglacial fluctuations in the Ross Sea and evidences for rapid episodic sea level changes due to marine ice collapse. In: Bindschadler RA (ed) West Antarctic Ice Sheet Initiative. NASA Conf Publ 3115(2):87–110Google Scholar
  4. Baroni C, Orombelli G (1994) Abandoned penguin rookeries as Holocene paleoclimatic indicator in Antarctica. Geology 22:23–26CrossRefGoogle Scholar
  5. Blume H-P, Beyer L, Bölter M, Erlenkeuser H, Kalk E, Kneesch S, Pfisterer U, Schneider D (1997) Pedogenic zonation in soils of the Southern circumpolar region. Adv GeoEcol 30:69–90Google Scholar
  6. Bockheim JG, Ugolini FC (1990) A review of pedogenic zonation in well-drained soils of the Southern circumpolar region. Quat Res 34:47–66CrossRefGoogle Scholar
  7. Bosman AL, Hockey PAR (1986) Seabird guano as a determinant of rocky intertidal community structure. Mar Ecol Prog Ser 32:247–257CrossRefGoogle Scholar
  8. Campbell IB, Claridge GGC (1969) A classification of frigic soils — the zonal soils of the Antarctic continent. Soil Sci 107:75–85CrossRefGoogle Scholar
  9. Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier, AmsterdamGoogle Scholar
  10. Clapperton CM (1990) Quaternary glaciations in the Southern Ocean and Antarctic Peninsula area. Quat Sci Rev 9:229–252CrossRefGoogle Scholar
  11. Cole CV, Jackson ML (1950) Solubility equilibrium constants of dihydroxy aluminium dihydrogen phosphate relating to a mechanism of phosphate fixation in soils. Soil Sci Soc Am Proc 15:84–98CrossRefGoogle Scholar
  12. Dawson AG (1992) Ice age earth. Routledge, London New YorkGoogle Scholar
  13. Denton H, Hughes TJ (1981) The last great ice-sheet. Wiley, New YorkGoogle Scholar
  14. Dingle RV, Marenssi SA, Lavelle M (1998) High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. J South Am Earth Sci 11:571–579CrossRefGoogle Scholar
  15. Emslie SD (1995) Age and taphonomy of abandoned penguin rookeries in the Antarctic Peninsula. Polar Rec 31: 09–418CrossRefGoogle Scholar
  16. Emslie SD, Fraser W, Smith RC, Walker W (1998) Abandoned penguin colonies and environmental changes in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct Sci 10:257–268CrossRefGoogle Scholar
  17. Everett KR (1976) A survey of the soils in the region of the South Shetland Islands and adjected parts of Antarctic Peninsula. Ohio State Univ, Inst Polar Stud Rep 58:1–44Google Scholar
  18. Flicoteaux R, Lucas J (1984) Weathering of phosphate minerals. In: Niagru JO, Moore PB (eds) Phosphate minerals. Springer, Berlin Heidelberg New York, pp 292–317CrossRefGoogle Scholar
  19. Gazdzicki A, Gruszczynski M, Hoffman A, Malkowski K, Marenssi S, Halas S, Tatur A (1992) Stable carbon and oxygen isotope record in the Paleogene of La Meseta Formation Seymour Island Antarctica. Antarct Sci 4:461–468CrossRefGoogle Scholar
  20. Golovkin AN, Garkovaja GP (1975) Udobrenie pribrelnych vod murmanskogo poberelija ekskrementami ptic v blizi kolonij razlilnych tipov. Biol Morja 5:49–57Google Scholar
  21. Golovkin AN, Greviz VI (1973) Vydelenije i ocenka gidrohimileskih anomalij v more metodom linejnych diskriminantnych funkcji (na primere barencevomorskih ptilnych bazarov). Okeanol 13:804–808Google Scholar
  22. Hansson L-A, Håkansson H (1992) Diatom community response along a productivity gradient of shallow Antarctic lakes. Polar Biol 12:463–468CrossRefGoogle Scholar
  23. Hutchinson GE (1950) Biogeochemistry of vertebrate excretion. Bull Am Mus Nat Hist 96:1–554Google Scholar
  24. Izaguirre I, Mataloni G, Vinocur A, Tell G (1993) Temporal and spatial variations of phytoplankton from Boeckella Lake (Hope Bay, Antarctica Peninsula). Antarct Sci 5:137–141CrossRefGoogle Scholar
  25. JabLo ński B (1984) Distribution and numbers of penguins in the region of King George Island (South Shetland Islands) in the breeding season 1980/1981. Pol Polar Res 5:17–30Google Scholar
  26. Jones VJ, Juggins S, Ellis-Evans JC (1993) The relationship between water chemistry and surface sediment diatom assemblages in maritime Antarctic lakes. Antarct Sci 5:339–348CrossRefGoogle Scholar
  27. Kawecka B, Olech M (1993) Diatom communities in the Vanishing and Ornithologist Creek, King George Island, South Shetlands, Antarctica. Hydrobiologia 269/270:327–333CrossRefGoogle Scholar
  28. Kawecka B, Olech M, Nowogrodzka-Zagórska M, Wojtuė B (1998) Diatom communities in small water bodies at H. Arctowski Polish Antarctic Station (King George Island, South Shetlands, Antarctica). Polar Biol 19:183–192CrossRefGoogle Scholar
  29. Laws RM (1985) The ecology of the Southern Ocean. Am Sci 73:26–40Google Scholar
  30. Marenssi SA, Reguero MA, Santillana SN, Vizcaino SF (1994) Eocene mammals from Seymour Island, Antarctica: palaeobiogeographical implications. Antarct Sci 6:3–15CrossRefGoogle Scholar
  31. Marsz A, Rakusa-Suszczewski S (1987) Charakterystyka ekologiczna rejonu Zatoki Admiralicji (King George Island, South Shetland Islands). I. Klimat i obszary wolne od lodu. Kosmos 36:103–127Google Scholar
  32. Martinez-Macchiavello JC, Tatur A, Servant-Vildary S, del Valle R (1996) Holocene environmental changes in a marine-estuarine-lacustrine sediment sequence, King George Island, Antarctica. Antarct Sci 8:312–322.CrossRefGoogle Scholar
  33. McCraw T (1967) Soils of Taylor Dry Valley, Victoria Land, Antarctica, with notes on soils from other localities in Victoria Land. NZ J Geol Geophys 10:498–539CrossRefGoogle Scholar
  34. Myrcha A, Ochyra R, Tatur A (1991) Site of Special Scientific Interest no. 8, Western shore of Admiralty Bay, King George Island, South Shetland Islands. In: Klekowski RZ, Opaliėski KW (eds) First Polish-Soviet Antarctic Symp. 'Arctowski 85'. Institute of Ecology Publ Office, Warsaw, pp 157–168Google Scholar
  35. Myrcha A, Pietr SJ, Tatur A (1985) The role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay King George Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycle and food webs. Springer, Berlin Heidelberg New York, pp 156–162Google Scholar
  36. Myrcha A, Tatur A (1991) Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Pol Polar Res 12:3–24Google Scholar
  37. Myrcha A, Tatur A, del Valle R (1990) A new species of fossil penguin from Seymour Island (West Antarctica). Alcheringa 14:195–205CrossRefGoogle Scholar
  38. Nikolayev VA (1980) Littoral diatoms from Fildes Peninsula, King George Island. Bot Zh 65:107–112Google Scholar
  39. Noriega JI, Tambussi CP, Jadwiszczak P, Myrcha A, Tatur A, Gazdzicki A (1995) Los pinguinos (Aves: Sphenisciformes) del Terciario de la isla Seymour, Antartida: revision y nuevos aportes. XI Jornadas Argentinas de Paleontologia de Vertebrados, Tucuman, AbstrGoogle Scholar
  40. Pietr SJ (1986) The physiological groups of microorganisms in different soils at Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Pol Polar Res 7:395–406Google Scholar
  41. Pietr SJ (1993) Soil microorganisms In: Rakusa-Suszczewski S (ed) The maritime Antarctic coastal ecosystem of Admiralty Bay. Dept of Antarctic Biology, PAS, Warsaw, pp 167–172Google Scholar
  42. Pietr SJ, Tatur A, Myrcha A (1983) Mineralization of penguin excrements in the Admiralty Bay region (King George Island, South Shetlands, Antarctica). Pol Polar Res 4:97–112Google Scholar
  43. Prothero DR (1994) The Eocene-Oligocene transition: paradise lost. Columbia Univ Press, New YorkGoogle Scholar
  44. Quilty PG (1990) Significance of evidence for changes in the Antarctic marine environment over the last 5 million years. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological changes and conservation. Springer, Berlin Heidelberg New York, pp 3–8CrossRefGoogle Scholar
  45. Rakusa-Suszczewski S (1980) The role of near-shore research in gaining and understanding of the functioning of Antarctic ecosystem. Pol Arch Hydrobiol 27:229–233Google Scholar
  46. Rakusa-Suszczewski S (1995) Flow of matter in the Admiralty Bay area, King George Island, maritime Antarctic. Proc NIPR Symp Polar Biol 8:101–113Google Scholar
  47. Rakusa-Suszczewski S (1999) Ekosystem morskiej Antarktyki (zmiany i zmiennool). PWN, WarszawaGoogle Scholar
  48. Sieburth JMcN (1963) Bacterial habitats in the Antarctic environment. In: Oppenheimer CH (ed) Symposium on marine microbiology. CC Thomas Publ House, Springfield, IL, pp 533–548Google Scholar
  49. Simpson DR (1972) Phosphatization. In: Fairbridge RW (ed) The encyclopaedia of geochemistry and environmental sciences. Van Nostrand Reinhold, New York, pp 940–942Google Scholar
  50. Sugden D (1982) Arctic and Antarctic. A modern geographical synthesis. Blackwell, OxfordGoogle Scholar
  51. Syroechkovsky EE (1959) The role of animals in the formation of primary soils under the condition of circumpolar regions of earth (Antarctica). Zool Zhur 38:1770–1775Google Scholar
  52. Tatur A (1987) Fluorine in ornithogenic soils and minerals on King George Island, West Antarctica. Pol Polar Res 8:65–74Google Scholar
  53. Tatur A (1989) Ornithogenic soils of the maritime Antarctic. Pol Polar Res 10:481–532Google Scholar
  54. Tatur A (1996) Reakcja ekosystemu Antarktyki na zmiany klimatu (Response of Antarctic ecosystem to climate changes) Prob Klimatol Pol 5:149–157Google Scholar
  55. Tatur A (1997) Ornithogenic soils of the maritime Antarctic: taxonomic position. Pol. Polar Stud, 24 Polar Symp 1997, Warszawa, pp 297–299Google Scholar
  56. Tatur A, Barczuk A (1984) Phosphates of ornithogenic soil on the volcanic King George Island (Maritime Antarctic). Pol Polar Res 5:61–97Google Scholar
  57. Tatur A, Barczuk A (1985) Ornithogenic phosphates on King George Island in the maritime Antarctic Zone. In: Siegfried RP, Condy WR, Laws RM (eds) Antarctic nutrient cycle and food webs. Springer, Berlin Heidelberg New York, pp 163–168Google Scholar
  58. Tatur A, Keck A (1990) Phosphates in ornithogenic soils of the maritime Antarctic. Proc NIPR Symp Polar Biol 3:133–150Google Scholar
  59. Tatur A, Myrcha A (1983) Changes in chemical composition of waters running off from the penguin rookeries in Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Pol Polar Res 4: 113–125Google Scholar
  60. Tatur A, Myrcha A (1984) Ornithogenic soils on King George Island, South Shetlands Islands (Maritime Antarctic Zone). Pol Polar Res 5:31–60Google Scholar
  61. Tatur A, Myrcha A (1988) Soils and vegetation in abandoned penguin rookeries (Maritime Antarctic Zone). Proc NIPR Symp Polar Biol 2:181–189Google Scholar
  62. Tatur A, Myrcha A (1993) Ornithogenic soils. In: Rakusa-Suszczewski S (ed) The maritime Antarctic coastal ecosystem of Admiralty Bay. Dept. of Antarctic Biology, Pol Acad Sci, Warsaw, pp 161–165Google Scholar
  63. Tatur A, Myrcha A (1991) Biogeochemical cycle of ornithogenic matter on land-sea boundary in maritime Antarctic zone. In: Klekowski RZ, Opaliėski KW (eds) First Polish-Soviet Antarctic Symposium 'Arctowski 85'. Institute of Ecology Publ Office, Warsaw, pp 169–176Google Scholar
  64. Tatur A, Myrcha A, Niegodzisz J (1997) Formation of abandoned penguin rookery ecosystems in maritime Antarctic. Polar Biol 17:405–417CrossRefGoogle Scholar
  65. Tedrow JCF (1977) Soils of the polar landscape. Rutgers Univ Press, New BrunswickGoogle Scholar
  66. Tedrow JCF, Ugolini FC (1966) Antarctic soils. In: Tedrow JCF (ed) Antarctic soils and soil forming processes. Am Geophys Union Antarct Res Ser 8:161–177Google Scholar
  67. Ugolini FC (1972) Ornithogenic soils of Antarctica. In: Llano GA (ed) Antarctic terrestrial biology. Am Geophys Union Antarct Res Ser 20:181–193Google Scholar
  68. Van de Vijver B, Beyens L (1997) Freshwater diatoms from some islands in the maritime Antarctic region. Antarct Sci 9:418–425CrossRefGoogle Scholar
  69. White WC, Warin ON (1964) A survey of phosphate deposits in the Southwest Pacific and Australian waters. Dept of National Dev, Bureau of Mineral Res, Geology and Geophysics, Bull 69, pp 1–173Google Scholar
  70. Wilson GJ (1983) Distribution and abundance of Antarctic and sub-Antarctic penguins: a synthesis of current knowledge. BIOMASS Sci Ser 4:1–46Google Scholar
  71. Zale R (1994) Changes in size of the Hope Bay Adelie penguin rookery as inferred from Lake Boeckella sediment. Ecography 17:297–304CrossRefGoogle Scholar
  72. Zinsmeister WB, Camacho HH (1982) Late Eocene (to possibly earliest Oligocene) molluscan fauna of the La Meseta Formation of Seymour Island, Antarctic Peninsula.. In: Craddock C (ed) Antarctic geoscience. Univ Wisconsin Press, Madison, pp 299–304Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Tatur

There are no affiliations available

Personalised recommendations