Highly Strengthened Nb3Sn Superconducting Wires

  • K. Katagiri
  • K. Noto
  • K. Watanabe
Part of the Advances in Materials Research book series (ADVSMATERIALS, volume 4)


The superconducting wire in a lrge-scale high-field magnet experiences a large electromagnetic force. This force causes an axial tensile stress in the wire as well as a transverse compressive stress, if the radial displacement of the winding is limited by some constraints. There have been many attempts to reinforce superconducting wires in order to improve the mechanical properties and strain tolerance of I c [1, 2, 3, 4]. In wires for compact high-field magnets made by the wind-and-react technique, the choice of the reinforcing material is important because the reinforcing material and the superconducting composites are heat-treated collectively. In order to avoid a decrease in overall critical current density, simple addition of reinforcing material as an internal reinforcing method is not preferable. Replacement of copper in the superconducting composite wire by a material with high strength as well as high electric conductivity such as Ta [5], alumina-particle-dispersed Cu [6, 7, 8, 9] and Cu−Nb microcomposite [10, 11, 12, 13, 14, 15, 16, 17, 18] is promising, although the stability of the wire is reduced to some extent [5,14,18].


Proof Stress Strain Dependence Composite Wire High Critical Current Density Axial Tensile Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Ekin, R. Flükiger and W. Specking: J. Appl. Phys. 54, 2869 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    R. Flükiger, E. Drost and W. Specking: Adv. Cryog. Eng. 30, 875 (1984)Google Scholar
  3. 3.
    K. Noto, N. Konishi, K. Watanabe, A. Nagata and T. Anayama: Proc. Int. Sympl. Flux Pin. Electromagn. Prop. Superconds., eds. T. Matsushita, K. Yamafuji and F. Irie, Fukuoka, 11–14 Nov. 1985 (Matsukura Press, Fukuoka 1985) p.272.Google Scholar
  4. 4.
    R. Flükiger and A. Nyilas: IEEE Trans. Magn. MAG-21, 285 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    M. Matsukawa, K. Noto, C. Takahashi, Y. Saito, N. Matsuura, K. Katagiri, M. Ikebe, T. Fukutsuka and K. Watanabe: IEEE Trans. Magn. 28, 880 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    E. Gregory, L.R. Motowidlo, G.M. Ozeryansky and L.T. Summers: IEEE Trans. Magn. MAG-27, 2033 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    S. Nakayama, S. Murase, K. Shimamura, N. Aoki and N. Shiga: Adv. Cryog. Eng. 38, 279 (1992)Google Scholar
  8. 8.
    K. Koyanagi, S. Nakayama, S. Murase, S. Nomura, K. Shimamura and M. Urata: IEEE Trans. Appl. Supercond. 7–2, 427 (1997)CrossRefGoogle Scholar
  9. 9.
    S. Murase, S. Nakayama, T. Masegi, K. Koyanagi, T. Nomura, N. Shiga, N. Kobayashi and K. Watanabe: J. Japan Inst. Metals, 61–9, 801 (1997)Google Scholar
  10. 10.
    C.C. Tsuei: J. Appl. Phys. 45, 1385 (1974)ADSCrossRefGoogle Scholar
  11. 11.
    J. Bevk, J.P. Harbison and J.L. Bell: J. Appl. Phys. 49, 6031 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    C.V. Renaud, E. Gregory and J. Wong: Adv. Cryog. Eng. 32, 443 (1986)CrossRefGoogle Scholar
  13. 13.
    K. Watanabe, A. Hoshi, S. Awaji, K. Katagiri, K. Noto, K. Goto, M. Sugimoto, T. Saito and O. Kohno: IEEE Trans. Appl. Supercond. 3, 1006 (1993)CrossRefGoogle Scholar
  14. 14.
    K. Watanabe, S. Awaji, K. Katagiri, K. Noto, K. Goto, M. Sugimoto, T. Saito and O. Kono: IEEE Trans. Magn. 30, 1871 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    K. Katagiri, K. Watanabe, K. Noto, K. Goto, T. Saito, O. Kohno, A. Iwamoto, M. Nunogaki and T. Okada: Cryogenics 34, 1039 (1994)CrossRefGoogle Scholar
  16. 16.
    K. Watanabe, K. Katagiri, K. Noto, S. Awaji, K. Goto, N. Sadakata, T. Saito and O. Kohno: IEEE Trans. Appl. Supercond. 5–2, 1905 (1995)CrossRefGoogle Scholar
  17. 17.
    K. Katagiri, K. Watanabe, H.S. Shin, Y. Shoji, N. Ebisawa, K. Noto, T. Okada, K. Goto, T. Saito and O. Kohno: Adv. Cryog. Eng. 42, 1423 (1996)Google Scholar
  18. 18.
    K. Watanabe, M. Motokawa, T. Onodera, K. Noto, K. Katagiri and T. Saito: Material Science Forum 308–311, 561 (1999)CrossRefGoogle Scholar
  19. 19.
    K. Katagiri, M. Fukumoto, K. Saito, M. Ohgami, T. Okada, A. Nagata, K. Noto and K. Watanabe: Adv. Cryog. Eng. 36, 69 (1990)CrossRefGoogle Scholar
  20. 20.
    K. Kamata, K. Katagiri, T. Okada, T. Takeuchi, K. Inoue, K. Watanabe, Y. Muto, T. Ogata and T. Tsuji: Proc. 11th Int. Conf. Magnet Tech., ed by T. Sekiguchi and S. Shimamoto, Tsukuba, 28 Aug-1 Sept., 1989 (Elsevier Appl. Sci., London, 1989) p. 1231.Google Scholar
  21. 21.
    J.W. Ekin: Cryogenics 20, 661 (1980)CrossRefGoogle Scholar
  22. 22.
    D.S. Easton, D.M. Kroeger, W. Specking and C.C. Koch: J. Appl. Phys. 51–5, 2748 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    G. Iwaki, M. Kimura, H. Moriai, K. Asano, K. Watanabe and M. Motokawa: Adv. Cryog. Eng. 46, 981 (2000)Google Scholar
  24. 24.
    T. Kuroda and H. Wada: Cryog. Eng. 28, 439 (1993) (in Japanese)CrossRefGoogle Scholar
  25. 25.
    J.W. Ekin: J. Appl. Phys. 62, 4829 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    T. Kuroda, H. Wada, S.L. Bray and J.W. Ekin: Fusion Eng. Des. 20, 271 (1993)CrossRefGoogle Scholar
  27. 27.
    K. Katagiri, T. Kuroda, H. Wada, H.S. Shin, K. Watanabe, K. Noto, Y. Shoji and H. Seto: IEEE Trans. Appl. Supercond. 5, 1900 (1995)CrossRefGoogle Scholar
  28. 28.
    K. Katagiri, K. Watanabe, T. Kuroda, K. Kasaba, K. Noto, T. Okada and O. Kohno: Sci. Rept. RITU A42, 381 (1996)Google Scholar
  29. 29.
    K. Watanabe, S. Awaji, M. Motokawa, S. Iwasaki, K. Goto, N. Sadakata, T. Saito, K. Watazawa, K. Jikihara and J. Sakuraba: IEEE Trans. Appl. Supercond. 9–2, 440 (1999)CrossRefGoogle Scholar
  30. 30.
    T. Kiyoshi, A. Sato, H. Wada, S. Hayashi, M. Shimada and Y. Kawate: IEEE Trans. Appl. Supercond. 9–2, 559 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • K. Katagiri
    • 1
  • K. Noto
    • 1
  • K. Watanabe
    • 2
  1. 1.Faculty of EngineeringIwate UniversityMoriokaJapan
  2. 2.Institute for Materials Research High Field Laboratory for Superconducting MaterialsTohoku UniversitySendaiJapan

Personalised recommendations