NMR/NQR Studies on Magnetism of Spin Ladder Sr14−xAxCu24O41 (A = Ca and La)

  • K. Kumagai
  • S. Tsuji
  • K. Maki
  • T. Goto
  • T. Fukase
Part of the Advances in Materials Research book series (ADVSMATERIALS, volume 4)


Hole-doped cuprates with low-dimensional Heisenberg spin systems have been investigated intensively after the discovery of high-T c superconductivity. The predictions of spin gap and superconductivity in carrier-doped ladder systems, i.e. coupled chain systems, have stimulated a renewal of studies on quantum behavior in low-dimensional systems [1,2]. The two-leg ladder cuprate, Sr14Cu24O41, is a unique system in which the carriers are controlled. Sr14Cu24O41 consists of CuO2 layers with one-dimensional (1D) chains of edge-sharing clusters and Cu2O3 layers with a two-leg ladder configuration, as shown in Fig. 16.1 [3]. Holes are transferred from the chain to the ladder site by the substitution of Ca for Sr and the system becomes conductive with increasing x on Sr14Cu24O41 [4]. In this system, the Cu-O chain is regarded as a nonconductive charge reservoir. When high pressure is applied, the compounds become more conductive and superconductivity appears finally around x = 12 under a high pressure of 3 ∼ 4GPa [5]. It is important to investigate the magnetic nature without any holes or with dilute holes in the ladder system. For La3+-substitution for Sr2+, the number of holes in the system decreases. The formal valence of Cu in both the chain and the ladder is 2+ for Sr8La6Cu24O41, i.e. here are no holes in the system. Thus, the system is expected to be completely insulating with long-range magnetic ordering of the Cu spins.


Hyperfine Field Hyperfine Coupling Constant Exchange Coupling Constant Ladder System Resonate Valence Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For reviews, E. Dagotto and T.M. Rice: Science 271, 618 (1996) and S. Maekawa: Science 273, 1515 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    T.M. Rice, S. Gopalan and M. Sigrist: Europhys. Lett. 23, 445 (1993); M. Sigrist, T.M. Rice and F.C. Zheng: Phys. Rev. B49, 12058 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    E.M. McCarran, M.A. Subramanian, J.C. Calabrese and R.L. Harlow: Mater. Res. Bull. 23, 1355 (1988)CrossRefGoogle Scholar
  4. 4.
    M. Kato, S. Shiota and Y. Koike: Physica C 258, 284 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori and K. Kinoshita: J. Phys. Soc. Jpn. 65, 2764 (1996): T. Nagata, M. Uehara, J. Goto, J. Akimitsu, N. Motoyama, H. Eisaki, S. Uchida, H. Takahashi, T. Nakanishi and N. Mori, Phys. Rev. Let. 81, 1090 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    J. Akimitsu, T. Nagata, H. Fujino, N. Motoyama, H. Eisaki, S. Uchida, H. Takahashi, T. Nakanishi, N. Mori, M. Nishi, K. Kakurai, S. Katano, M. Hiroi, M. Sera and N. Kobayashi: Physics and Chemistry of Transition Metal Oxides, Springer Series on Sohd-State Sciences, Vol. 125 (Springer, Berlin 1999) p. 289CrossRefGoogle Scholar
  7. 7.
    S. Tsuji, K. Kumagai, M. Kato, and Y. Kohike: J. Phys. Soc. Jpn. 65, 3474 (1996); K. Kumagai, S. Tsuji, M Kato and Y. Koike: Phys. Rev. Lett. 78, 1992 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    M. Takigawa, N. Motoyama, H. Eisaki and S. Uchida: Phys. Rev. B 57, 1124 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    K. Magishi, S. Matsumoto, Y. Kitaoka, K. Ishida, K. Asayama, M. Uehara, Y. Nagata and J. Akimitsu: Phys. Rev. B 57, 11533 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    K. Kumagai, S. Tsuji and K. Maki: Physica B 259–261, 1044 (1999); S. Tsuji, K. Maki and K. Kumagai: J. Low Temp. Phys. 117, 1683 (1999)CrossRefGoogle Scholar
  11. 11.
    C.H. Pennington and C.P. Slichter: Phys. Rev. Lett. 66, 381 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    S. Katano, T. Nagata, J. Akimitsu, M. Nishi and K. Kakurai: Phys. Rev. Lett. 82, 636 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    S. Sugai and M. Suzuki: Phys. Status Solidi (B) 215, 653 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    K. Kubo, S. Ishikawa, T. Noji, T. Adachi, Y. Koike, K. Maki, S. Tsuji and K. Kumagai: J. Phys. Soc. Jpn. 70, 437 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    M. Troyer, H. Tsunetsugu and T.M. Rice: Phys. Rev. B 53, 251 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    T. Ohta, F. Izumi, M. Onoda, M. Isobe, E. Takayama-Muromachi and A.W. Hewat: J. Phys. Soc. Jpn. 66, 3107 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    S. Eggert and L. Affleck: Phys. Rev. Lett. 75, 934 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    F. Fukuyama, T. Tamamoto and M. Saito: J. Phys. Soc. Jpn. 65, 1182 (1996)Google Scholar
  19. 19.
    S. Tsuji, K. Maki and K. Kumagai: Physica B 284–288, 1593 (2000)CrossRefGoogle Scholar
  20. 20.
    S. Ohsugi, K. Magishi, S. Matsumoto, Y. Kitaoka, T. Nagata and J. Akimitsu: Phys. Rev. Lett. 82, 4715 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • K. Kumagai
    • 1
  • S. Tsuji
    • 1
  • K. Maki
    • 1
  • T. Goto
    • 2
  • T. Fukase
    • 3
  1. 1.Graduate School of ScienceHokkaido UniversitySapporoJapan
  2. 2.Faculty of Science and TechnologySophia UniversityTokyoJapan
  3. 3.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations