Skip to main content

Nierenzellkarzinome

  • Chapter
  • 56 Accesses

Part of the book series: Molekulare Medizin ((MOLMED))

Zusammenfassung

Das Nierenzellkarzinom wurde bereits im frühen 19. Jahrhundert beschrieben und sein Ursprung dem tubulären Epithel zugeordnet. Zunächst setzte sich, aufbauend auf den Arbeiten von Grawitz (1883), die Lehrmeinung durch, dass das Nierenzellkarzinom aus ektopen adrenalen Zellen im Nierengewebe abzuleiten sei, da sich die Karzinomzellen in ihrem Fettgehalt nicht von Zellen der Nebenniere unterscheiden (Grawitz 1883). In der älteren Literatur wird daher das Nierenzellkarzinom auch als Grawitz-Tumor oder hypernephroides Karzinom bezeichnet (Grawitz 1883). Auch der Begriff des Hypernephroms wurde in diesem Zusammenhang geprägt und findet sich fortan zwar konzeptionell falsch, aber dennoch nachhaltig auch heute noch in Lehrbüchern.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adryan B, Decker HJ, Papas TS, Hsu T (2000) Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 19:2803–2811

    PubMed  CAS  Google Scholar 

  • Anglard P, Tory K, Brauch H et al. (1991) Molecular analysis of genetic changes in the origin and development of renal cell carcinoma. Cancer Res 51:1071–1077

    PubMed  CAS  Google Scholar 

  • Atlas I, Mendelsohn J, Baselga J, Fair WR, Masui H, Kumar R (1992) Growth regulation of human renal carcinoma cells: role of transforming growth factor alpha. Cancer Res 52:3335–3339

    PubMed  CAS  Google Scholar 

  • Becker N, Wahrendorf J (1998) Atlas of cancer mortality in the Federal Republic of Germany 1981-1990, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Berg WJ, Divgi CR, Nanus DM, Motzer RJ (2000) Novel investigative approaches for advanced renal cell carcinoma. Semin Oncol 27:234–239

    PubMed  CAS  Google Scholar 

  • Bernauer U, Birner G, Dekant W, Henschler D (1996) Biotransformation of trichloroethene: dose-dependent excretion of 2,2,2-trichloro-metabolites and mercapturic acids in rats and humans after inhalation. Arch Toxicol 70:338–346

    PubMed  CAS  Google Scholar 

  • Bernues M, Casadevall C, Miro R et al. (1995) Cytogenetic characterization of a familial papillary renal cell carcinoma. Cancer Genet Cytogenet 84:123–127

    PubMed  CAS  Google Scholar 

  • Beroud C, Joly D, Gallou C, Staroz F, Orfanelli MT, Junien C (1998) Software and database for the analysis of mutations in the VHL gene. Nucleic Acids Res 26:256–258

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beroud C, Collod-Beroud G, Boileau C, Soussi T, Junien C (2000) UMD (Universal mutation database): a generic software to build and analyze locus-specific databases. Hum Mutat 15:86–94

    PubMed  CAS  Google Scholar 

  • Bjornsson J, Short MP, Kwiatkowski DJ, Henske EP (1996) Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am J Pathol 149:1201–1208

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376:768–771

    PubMed  CAS  Google Scholar 

  • Biom JH, Poppel H van, Marechal JM et al. (1999) Radical nephrectomy with and without lymph node dissection: preliminary results of the EORTC randomized phase III protocol 30881. EORTC Genitourinary Group. Eur Urol 36:570–575

    Google Scholar 

  • Bonicalzi ME, Groulx I, Paulsen N de, Lee S (2001) Role of exon 2-encoded beta-domain of the von Hippel-Lindau tumor suppressor protein. J Biol Chem 276:1407–1416

    PubMed  CAS  Google Scholar 

  • Boring CC, Squires TS, Tong T, Montgomery S (1994) Cancer statistics, 1994. CA Cancer J Clin 44:7–26

    PubMed  CAS  Google Scholar 

  • Bourneville D (1880) Sclereuse tubereuse des circonvolutions cerebrales. Idiote et epilepsie hemiplegique. Arch Neurol (Paris) 1:81

    Google Scholar 

  • Brauch H, Pomer S, Hieronymus T, Schadt T, Lohrke H, Komitowski D (1994) Genetic alterations in sporadic renal cell carcinoma: molecular analyses of tumor suppressor gene harboring chromosomal regions 3p, 5q, and 17p.World J Urol 12:162–168

    PubMed  CAS  Google Scholar 

  • Brauch H, Kishida T, Glavac D et al. (1995) Von Hippel-Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum Genet 95:551–556

    PubMed  CAS  Google Scholar 

  • Brauch H, Weirich G, Hornauer MA, Storkel S, Wohl T, Bruning T (1999) Trichloroethylene exposure and specific somatic mutations in patients with renal cell carcinoma. J Natl Cancer Inst 91:854–861

    PubMed  CAS  Google Scholar 

  • Brauch H, Weirich G, Brieger J et al. (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60:1942–1948

    PubMed  CAS  Google Scholar 

  • Braybrooke JP, Vallis KA, Houlbrook S et al. (2000) Evaluation of toremifene for reversal of multidrug resistance in renal cell cancer patients treated with vinblastine. Cancer Chemother Pharmacol 46:27–34

    PubMed  CAS  Google Scholar 

  • Brieger J, Weidt EJ, Schirmacher P, Storkel S, Huber C, Decker HJ (1999) Inverse regulation of vascular endothelial growth factor and VHL tumor suppressor gene in sporadic renal cell carcinomas is correlated with vascular growth: an in vivo study on 29 tumors. J Mol Med 77:505–510

    PubMed  CAS  Google Scholar 

  • Bruning T, Bolt HM (2000) Renal toxicity and carcinogen-city of trichloroethylene: key results, mechanisms, and controversies. Crit Rev Toxicol 30:253–285

    PubMed  CAS  Google Scholar 

  • Bruning T, Lammert M, Kempkes M, Thier R, Golka K, Bolt HM (1997) Influence of polymorphisms of GSTM1 and GSTT1 for risk of renal cell cancer in workers with longterm high occupational exposure to trichloroethene. Arch Toxicol 71:596–599

    PubMed  CAS  Google Scholar 

  • Bruning T, Vamvakas S, Makropoulos V, Birner G (1998) Acute intoxication with trichloroethene: clinical symptoms, toxicokinetics, metabolism, and development of biochemical parameters for renal damage. Toxicol Sci 41:157–165

    PubMed  CAS  Google Scholar 

  • Bugert P, Gaul C, Weber K et al. (1997) Specific genetic changes of diagnostic importance in chromophobe renal cell carcinomas. Lab Invest 76:203–208

    PubMed  CAS  Google Scholar 

  • Cairns P, Tokino K, Eby Y, Sidransky D (1995) Localization of tumor suppressor loci on chromosome 9 in primary human renal cell carcinomas. Cancer Res 55:224–227

    PubMed  CAS  Google Scholar 

  • Campbell SC, Novick AC (1994) Management of local recurrence following radical nephrectomy or partial nephrectomy. Urol Clin North Am 21:593–599

    PubMed  CAS  Google Scholar 

  • Cavenee WK, Dry ja TP, Phillips RA et al. (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784

    PubMed  CAS  Google Scholar 

  • Chen F, Kishida T, Duh FM et al. (1995a) Suppression of growth of renal carcinoma cells by the von Hippel-Lindau tumor suppressor gene. Cancer Res 55:4804–4807

    PubMed  CAS  Google Scholar 

  • Chen F, Kishida T, Yao M et al. (1995b) Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat 5:66–75

    PubMed  CAS  Google Scholar 

  • Chen F, Slife L, Kishida T, Mulvihill J, Tisherman SE, Zbar B (1996) Genotype-phenotype correlation in von HippelLindau disease: identification of a mutation associated with VHL type 2A. J Med Genet 33:716–717

    PubMed Central  PubMed  CAS  Google Scholar 

  • Childs R, Chernoff A, Contentin N et al. (2000) Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 343:750–758

    PubMed  CAS  Google Scholar 

  • Chung-Park M, Parveen T, Lam M (1989) Acquired cystic disease of the kidneys and renal cell carcinoma in chronic renal insufficiency without dialysis treatment. Nephron 53:157–161

    PubMed  CAS  Google Scholar 

  • Cockman ME, Masson N, Mole DR et al. (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275:25733–25741

    PubMed  CAS  Google Scholar 

  • Cohen AJ, Li FP, Berg S et al. (1979) Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 301:592–596

    PubMed  CAS  Google Scholar 

  • Cohen HT, Zhou M, Welsh AM et al. (1999) An important von Hippel-Lindau tumor suppressor domain mediates Sp1-binding and self-association. Biochem Biophys Res Commun 266:43–50

    PubMed  CAS  Google Scholar 

  • Collins ET (1894) Intra-ocular growths. Two cases, brother and sister, with pecular vascular new growth, probably primarily retinal, affecting both eyes. Trans Ophthalmol Soc UK 14:141

    Google Scholar 

  • Comings DE (1973) A general theory of carcinogenesis. Proc Natl Acad Sci USA 70:3324–3328

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cook RJ, Lawless JF (1996) Interim monitoring of longitudinal comparative studies with recurrent event responses. Biometrics 52:1311–1323

    PubMed  CAS  Google Scholar 

  • Crossey PA, Richards FM, Foster K et al. (1994) Identification of intragenic mutations in the von Hippel-Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum Mol Genet 3:1303–1308

    PubMed  CAS  Google Scholar 

  • Decker HJ, Neumann HP, Walter TA, Sandberg AA (1988) 3p involvement in a renal cell carcinoma in von Hippel-Lindau syndrome. Region of tumor breakpoint clustering on 3p? Cancer Genet Cytogenet 33:59–65

    PubMed  CAS  Google Scholar 

  • Decker HJ, Neuhaus C, Jauch A et al. (1996) Detection of a germline mutation and somatic homozygous loss of the von Hippel-Lindau tumor-suppressor gene in a family with a de novo mutation. A combined genetic study, including cytogenetics, PCR/SSCP, FISH, and CGH. Hum Genet 97:770–776

    PubMed  CAS  Google Scholar 

  • Dekant W, Metzler M, Henschler D (1986a) Identification of S-I,2-dichlorovinyl-N-acetyl-cysteine as a urinary metabolite of trichloroethylene: a possible explanation for its nephrocarcinogenicity in male rats. Biochem Pharmacol 35:2455–2458

    PubMed  CAS  Google Scholar 

  • Dekant W, Schulz A, Metzler M, Henschler D (1986b) Absorption, elimination and metabolism of trichloroethylene: a quantitative comparison between rats and mice. Xenobiotica 16:143–152

    PubMed  CAS  Google Scholar 

  • Delahunt B, Eble JN (1997) Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol 10:537–544

    PubMed  CAS  Google Scholar 

  • Divgi CR, Bander NH, Scott AM et al. (1998) Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma.Clin Cancer Res 4:2729–2739

    PubMed  CAS  Google Scholar 

  • Duan DR, Humphrey JS, Chen DY et al. (1995a) Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc Natl Acad Sci USA 92:6459–6463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Duan DR, Pause A, Burgess WH et al. (1995b) Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269:1402–1406

    PubMed  CAS  Google Scholar 

  • Delahunt B, Eble JN (1997) Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol 10:537–544

    PubMed  CAS  Google Scholar 

  • Divgi CR, Bander NH, Scott AM et al. (1998) Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res 4:2729–2739

    PubMed  CAS  Google Scholar 

  • Duan DR, Humphrey JS, Chen DY et al. (1995a) Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc Natl Acad Sci USA 92:6459–6463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Duan DR, Pause A, Burgess WH et al. (1995b) Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269:1402–1406

    PubMed  CAS  Google Scholar 

  • Fischer J, Palmedo G, Knobloch R von et al. (1998) Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene 17:733–739

    PubMed  CAS  Google Scholar 

  • Fleming I.D. (1998) Revision of TNM classification for oropharyngeal carcinoma. Cancer 82:1611–1612

    PubMed  CAS  Google Scholar 

  • Fossa SD (2000) Interferon in metastatic renal cell carcinoma. Semin Oncol 27:187–193

    PubMed  CAS  Google Scholar 

  • Foster K, Prowse A, Berg A van den et al. (1994) Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet 3:2169–2173

    PubMed  CAS  Google Scholar 

  • Franksson C, Bergstrand A, Ljungdahl I, Magnusson G, Nordenstarn H (1972) Renal carcinoma (hypernephroma) occurring in 5 siblings. J Urol 108:58–61

    PubMed  CAS  Google Scholar 

  • Freeman MR, Washecka R, Chung LW (1989) Aberrant expression of epidermal growth factor receptor and HER-2 (erbB-2) messenger RNAs in human renal cancers. Cancer Res 49:6221–6225

    PubMed  CAS  Google Scholar 

  • Gamelin E, Mertins SD, Regis JT et al. (1999) Intrinsic drug resistance in primary and metastatic renal cell carcinoma. J Urol 162:217–224

    PubMed  CAS  Google Scholar 

  • Gallou C, Longemeaux S, Delomenie C et al. (in press) Associations of GSTT1 non-null and NAT1 slow/rapid genotypes with VHL transversions in sporadic renal cell carcinoma. Pharmacogenetics in press

    Google Scholar 

  • Glavac D, Neumann HP, Wittke C et al. (1996) Mutations in the VHL tumor suppressor gene and associated lesions in families with von Hippel-Lindau disease from central Europe. Hum Genet 98:271–280

    PubMed  CAS  Google Scholar 

  • Glenn GM, Coyke PL, Zbar B, Linehan WM (1990) Von Hippel-Lindau disease. Clinical review and molecular genetics. Probl Urol 4:312–330

    Google Scholar 

  • Glenn GM, Daniel LN, Choyke P et al. (1991) Von Hippel-Lindau (VHL) disease: distinct phenotypes suggest more than one mutant allele at the VHL locus. Hum Genet 87:207–210

    PubMed  CAS  Google Scholar 

  • Gnarra JR, Tory K, Weng Y et al. (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7:85–90

    PubMed  CAS  Google Scholar 

  • Gnarra JR, Zhou S, Merrill MJ et al. (1996) Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci USA 93:10589–10594

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gnarra JR, Ward JM, Porter FD et al. (1997) Defective placental vasculogenesis causes embryonic lethality in VHLdeficient mice. Proc Natl Acad Sci USA 94:9102–9107

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gorospe M, Egan JM, Zbar B et al. (1999) Protective function of von Hippel-Lindau protein against impaired protein processing in renal carcinoma cells. Mol Cell Biol 19:1289–1300

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grabmaier K, Vissers JL, De Weijert MC et al. (2000) Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int J Cancer 85:865–870

    PubMed  CAS  Google Scholar 

  • Grawitz PA (1883) Die sogenannten Lipoma der Niere.Virchows Arch 93:39–63

    Google Scholar 

  • Green JS, Bowmer MI, Johnson GJ (1986) Von Hippel-Lindau disease in a Newfoundland kindred. CMAJ 134:133–146

    PubMed Central  PubMed  CAS  Google Scholar 

  • Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64:425–427

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gross DJ, Avishai N, Meiner V, Filon D, Zbar B, Abeliovich D (1996) Familial pheochromocytoma associated with a novel mutation in the von Hippel-Lindau gene. J Clin Endocrinol Metab 81:147–149

    PubMed  CAS  Google Scholar 

  • Groulx I, Bonicalzi ME, Lee S (2000) Ran-mediated nuclear export of the von Hippel-Lindau tumor suppressor protein occurs independently of its assembly with cullin-2. J Biol Chem 275:8991–9000

    PubMed  CAS  Google Scholar 

  • Harris AL (2000) Von Hippel-Lindau syndrome: target for anti-vascular endothelial growth factor (VEGF) receptor therapy. Oncologist 5:32–36

    PubMed  CAS  Google Scholar 

  • Henschler D, Vamvakas S, Lammert M et al. (1995) Increased incidence of renal cell tumors in a cohort of cardboard workers exposed to triehloroethene. Arch Toxicol 69:291–299

    PubMed  CAS  Google Scholar 

  • Herman JG, Latif F, Weng Y et al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91:9700–9704

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hethcote HW, Knudson AG Jr (1978) Model for the incidence of embryonal cancers: application to retinoblastoma.Proc Natl Acad Sci USA 75:2453–2457

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hofstra RM, Landsvater RM, Ceccherini I et al. (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullarythyroid carcinoma. Nature 367:375–376

    PubMed  CAS  Google Scholar 

  • Hosoe S, Brauch H, Latif F et al. (1990) Localization of the von Hippel-Lindau disease gene to a small region of chromosome 3. Genomies 8:634–640

    CAS  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor lalpha is mediated by an Ordependent degradation domain via the ubiquitin-protea-some pathway. Proc Natl Acad Sci USA 95:7987–7992

    PubMed Central  PubMed  CAS  Google Scholar 

  • IARC IAfRoC (1987) IARC Monographs on the evaluation of carcinogenic risks to humans. Overall evaluations of carcinogenicity: an updating of IARC monographs Vols 1-42. IARC, Lyon, Suppl 7

    Google Scholar 

  • Idle JR, Armstrong M, Boddy AV et al. (1992) The pharmacogenetics of chemical carcinogenesis. Pharmacogenetics 2:246–258

    PubMed  CAS  Google Scholar 

  • Iliopoulos O, Kibel A, Gray S, Kaelin WG (1995) Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1:822–826

    PubMed  CAS  Google Scholar 

  • Ivanov SV, Kuzmin I, Wei MH et al. (1998) Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci USA 95:12596–12601

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jacobsen J, Rasmuson T, Grankvist K, Ljungberg B (2000) Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 163:343–347

    PubMed  CAS  Google Scholar 

  • Jeffers M, Rao MS, Rulong S et al. (1996) Hepatocyte growth factor/scatter factor-Met signaling induces proliferation, migration, and morphogenesis of pancreatic oval cells. Cell Growth Differ 7:1805–1813

    PubMed  CAS  Google Scholar 

  • Jones AC, Daniells CE, Snell RG et al. (1997) Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated farnilial and sporadic tuberous sclerosis. Hum Mol Genet 6:2155–2161

    PubMed  CAS  Google Scholar 

  • Kaelin G Jr (1999) Many vessels, faulty gene. Nature 399: 203–204

    PubMed  CAS  Google Scholar 

  • Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW (2000) Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 97:10430–10450

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kan YW, Dozy AM (1978) Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci USA 75:5631–5635

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kenck C, Wilhelm M, Bugert P, Staehler G, Kovacs G (1996) Mutation of the VHL gene is associated exclusively with the development of non-papillary renal cell carcinomas. J Pathol 179:157–161

    PubMed  CAS  Google Scholar 

  • Kessler PM, Vasavada SP, Rackley RR et al. (1995) Expression of the Von Hippel-Lindau tumor suppressor gene, VHL, in human fetal kidney and during mouse embryogenesis. Mol Med 1:457–466

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr (1995) Binding of the von Hippel-Lindau tumor suppressor protein to Eiongin Band C. Science 269:1444–1446

    PubMed  CAS  Google Scholar 

  • Kishida T, Yao M, Chen F, Orcutt ML, Lerman MI, Zbar B (1994) A novel donor splice site mutation associated with two mRNAs in von Hippel-Lindau disease. Hum Mol Genet 3:1191–1192

    PubMed  CAS  Google Scholar 

  • Kishida T, Stackhouse TM, Chen F, Lerman MI, Zbar B (1995) Cellular proteins that bind the von Hippel-Lindau disease gene product: mapping of binding domains and the effect of missense mutations.Cancer Res 55:4544–4548

    PubMed  CAS  Google Scholar 

  • Klein B, Weirich G, Brauch H (2001) DHPLC for germline mutation screening in the analysis of the VHL tumor suppressor gene: usefulness and limitations. Hum Genet108:376–384

    PubMed  CAS  Google Scholar 

  • Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Hirayama Y, Kobayashi E, Kubo Y, Hino O (1995) A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer. Nat Genet 9:70–74

    PubMed  Google Scholar 

  • Kovacs G (1989) Papillary renal cell carcinoma. A morphologic and cytogenetic study of 11 cases. Am J Pathol134:27–34

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kovacs G (1993a) Molecular cytogenetics of renal cell tumors. Adv Cancer Res 62:89–124

    PubMed  CAS  Google Scholar 

  • Kovacs G (1993b) Molecular differential pathology of renal cell tumours. Histopathology 22:1–8

    PubMed  CAS  Google Scholar 

  • Kovacs G, Szucs S, de Riese W, Baumgartel H (1987) Specific chromosome aberration in human renal cell carcinoma. Int J Cancer 40:171–178

    PubMed  CAS  Google Scholar 

  • Kovacs G, Brusa P, de Riese W (1989a) Tissue-specific expression of a constitutional 3;6 translocation: development of multiple bilateral renal-cell carcinomas. Int J Cancer 43:422–427

    PubMed  CAS  Google Scholar 

  • Kovacs G, Wilkens L, Papp T, de Riese W (1989b) Differentiation between papillary and nonpapillary renal cell carcinomas by DNA analysis. J Natl Cancer Inst 81:527–530

    PubMed  CAS  Google Scholar 

  • Krek W (1998) Proteolysis and the Gl-S transition: the SCF connection. Curr Opin Genet Dev 8:36–42

    PubMed  CAS  Google Scholar 

  • Krieg M, Haas R, Brauch H, Acker T, Flamme I, Plate KH (2000) Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19:5435–5443

    PubMed  CAS  Google Scholar 

  • Kuzmin I, Duh FM, Latif F, Geil L, Zbar B, Lerman MI (1995) Identification of the promoter of the human von Hippel-Lindau disease tumor suppressor gene. Oncogene 10:2185–2194

    PubMed  CAS  Google Scholar 

  • Lamiell JM, Salazar FG, Hsia YE (1989) Von Hippel-Lindau disease affecting 43 members of a single kindred. Medicine (Baltimore) 68:1–29

    CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J et al. (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene.Science 260:1317–1320

    PubMed  CAS  Google Scholar 

  • Lerman M (2001) VHL protein function in health and disease.Wiley, New York

    Google Scholar 

  • Lerman MI, Latif F, Glenn GM et al. (1991) Isolation and regional localization of a large collection (2,000) of single-copy DNA fragments on human chromosome 3 for mapping and cloning tumor suppressor genes. Hum Genet 86:567–577

    PubMed  CAS  Google Scholar 

  • Li FP, Marchetto DJ, Brown RS (1982) Familial renal carcinoma.Cancer Genet Cytogenet 7:271–275

    PubMed  CAS  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role of DNA methylation in genomic imprinting. Nature 366:362–365

    PubMed  CAS  Google Scholar 

  • Liao SY, Aurelio ON, Jan K, Zavada J, Stanbridge EJ (1997) Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney.Cancer Res 57:2827–2831

    PubMed  CAS  Google Scholar 

  • Lieubeau-Teillet B, Rak J, Jothy S, Iliopoulos O, Kaelin W, Kerbel RS (1998) Von Hippel-Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res 58:4957–4962

    PubMed  CAS  Google Scholar 

  • Lindau A (1926) Studien über Kleinhirnzysten. Bau, Pathogenese und Beziehungen zur Angiomatosis retinae. Acta Pathol Mierobiol Scand [Suppl I] p 1

    Google Scholar 

  • Linehan WM, Lerman MI, Zbar B (1995) Identification of the von Hippel-Lindau (VHL) gene. Its role in renal cancer.JAMA 273:564–570

    PubMed  CAS  Google Scholar 

  • Linehan WM, Shipley W, Parkinson D (1996) Cancer of the kidney and ureter. In: DeVita V.T., Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology.Lippincott, Philadelphia, p 19

    Google Scholar 

  • Lonergan KM, Iliopoulos O, Ohh M et al. (1998) Regulation of hypoxia-indueible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cu12. Mol Cell Biol 18:732–741

    PubMed Central  PubMed  CAS  Google Scholar 

  • Longuemaux S, Delomenie C, Gallou C et al. (1999) Candidate genetic modifiers of individual susceptibility to renal cell careinoma: a study of polymorphie human xenobiotic-metabolizing enzymes. Cancer Res 59:2903–2908

    PubMed  CAS  Google Scholar 

  • Luiten RM, Coney LR, Fleuren GJ, Warnaar SO, Litvinov SV (1996) Generation of chimeric bispecific G250/anti-CD3 monoclonal antibody, a tool to combat renal cell carcinoma.Br J Cancer 74:735-744

    Google Scholar 

  • Maher ER, Yates JR, Harries R et al. (1990) Clinical features and natural history of von Hippel-Lindau disease. QJM 77:1151–1163

    PubMed  CAS  Google Scholar 

  • Mai N, Qian C, Yokomizu A et al. (1998) Loss of imprinting and allele switch of p53 in renal cell carcinoma. Oncogene 17:1739–1741

    PubMed  CAS  Google Scholar 

  • Mandel JS, McLaughlin JK, Schlehofer B et al. (1995) International renal-cell cancer study. IV. Occupation. Int J Cancer 61:601–605

    PubMed  CAS  Google Scholar 

  • Manski TJ, Heffner DK, Glenn GM et al. (1997) Endolymphatic sac tumors. A source of morbid hearing loss in von Hippel-Lindau disease. JAMA 277:1461–1466

    PubMed  CAS  Google Scholar 

  • Matson MA, Cohen EP (1990) Acquired cystic kidney disease: occurrence, prevalence, and renal cancers. Medicine (Baltimore) 69:217–226

    CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW et al. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    PubMed  CAS  Google Scholar 

  • McCredie M, Pommer W, McLaughlin JK et al. (1995) International renal-cell cancer study. II. Analgesies. Int J Cancer60:345–349

    PubMed  CAS  Google Scholar 

  • McLaughlin JK, Blot WJ (1997) A critical review of epidemiology studies of triehloroethylene and perchloroethylene and risk of renal-cell cancer. Int Arch Occup Environ Health 70:222–231

    PubMed  CAS  Google Scholar 

  • McLaughlin JK, Lindblad P, Mellemgaard A et al. (1995) International renal-cell cancer study. I. Tobacco use. Int J Cancer 60:194–198

    PubMed  CAS  Google Scholar 

  • Mellemgaard A, Lindblad P, Schlehofer B et al. (1995) International renal-cell cancer study. III. Role of weight, height, physical activity, and use of amphetamines.Int J Cancer 60:350–354

    PubMed  CAS  Google Scholar 

  • Melmon KL, Rosen SW (1964) Lindau’s disease: review of the literature and study of a large kindred. Am J Med 36:595–617

    PubMed  CAS  Google Scholar 

  • Mickisch GH (1994) Chemoresistance of renal cell carcinoma: 1986-1994. World J Urol 12:214–223

    Google Scholar 

  • Miller MS, McCarver DG, Bell DA, Eaton DL, Goldstein JA (1997) Genetic polymorphisms in human drug metabolic enzymes. Fundam Appl Toxicol 40:1–14

    PubMed  CAS  Google Scholar 

  • Moch HP, Sauter G, Buchholz N et al. (1996) Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Res 56:27–30

    PubMed  CAS  Google Scholar 

  • Moch H, Sauter G, Buchholz N et al. (1997) Epidermal growth factor receptor expression is associated with rapid tumor cell proliferation in renal cell carcinoma. Hum Pathol 28:1255–1259

    PubMed  CAS  Google Scholar 

  • Moch H, Sauter G, Gasser TC et al. (1998) EGF-r gene copy number changes in renal cell carcinoma detected by fluorescence in situ hybridization. J Pathol 184:424–429

    PubMed  CAS  Google Scholar 

  • Morita R, Saito S, Ishikawa et al. (1991) Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma. Cancer Res 51:5817–5820

    PubMed  CAS  Google Scholar 

  • Mostofi FK (1981) Histological typing of kidney tumors. In: Mostofi FK (ed) International histological classification of tumours, vol 25. WHO, Geneva

    Google Scholar 

  • Motzer RJ, Russo P (2000) Systemic therapy for renal cell carcinoma. J Urol 163:408–417

    PubMed  CAS  Google Scholar 

  • Motzer RJ, Bander NH, Nanus DM (1996) Renal-cell carcinoma. N Engl J Med 335:865–875

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP (1997) The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 17:5629–5639

    PubMed Central  PubMed  CAS  Google Scholar 

  • Müller M, Birner G, Dekant W (1998a) Reactivity of haloketenes and halothioketenes with nucleobases: chemical characterization of reaction products. Chem Res Toxicol 11:454–463

    PubMed  Google Scholar 

  • Müller M, Birner G, Sander M, Dekant W (1998b) Reactivity of haloketenes and halothioketenes with nucleobases: reactions in vitro with DNA. Chem Res Toxicol 11:464–470

    PubMed  Google Scholar 

  • Murphy WM, Beckwith JB, Farrow GM (1994) Atlas of tumor pathology, tumors of the kidney, bladder, and related urinary structures. Armed Forces Institute of Pathology, Washington DC, p 102

    Google Scholar 

  • Nagata H, Worobec AS, Oh CK et al. (1995) Identification of a point mutation in the catalytie domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 92:10560–10564

    PubMed Central  PubMed  CAS  Google Scholar 

  • Naitoh J, Kaplan A, Dorey F, Figlin R, Belldegrun A (1999) Metastatic renal cell carcinoma with concurrent inferior vena caval invasion: long-term survival after combination therapy with radical nephrectomy, vena caval thrombectomy and postoperative immunotherapy. J Urol 162:46–50

    PubMed  CAS  Google Scholar 

  • Nebert DW, McKinnon RA, Puga A (1996) Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol 15:273–280

    PubMed  CAS  Google Scholar 

  • Neumann HP (1987a) Basic criteria for clinical diagnosis and genetic counselling in von Hippel-Lindau syndrome.Vasa 16:220–226

    PubMed  CAS  Google Scholar 

  • Neumann HP (1987b) Prognosis of von Hippel-Lindau syndrome.Vasa 16:309–311

    PubMed  CAS  Google Scholar 

  • Neumann HP, Wiestler OD (1991) Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus. Lancet 337:1052–1054

    PubMed  CAS  Google Scholar 

  • Neumann HP, Dinkel E, Brambs HJ et al. (1991) Pancreatic lesions in the von Hippel-Lindau syndrome. Gastroenterology 101:465–471

    PubMed  CAS  Google Scholar 

  • Neumann HP, Eng C, Mulligan LM et al. (1995) Consequences of direct genetic testing for germline mutations in the clinical management of families with multiple endocrine neoplasia, type II. JAMA 274:1149–1151

    PubMed  CAS  Google Scholar 

  • Oda H, Kume H, Shimizu Y, Inoue T, Ishikawa T (1998) Loss of imprinting of igf 2 in renal-cell carcinomas. Int J Cancer 75:343–346

    PubMed  CAS  Google Scholar 

  • Ogawa O, Kakehi Y, Ogawa K, Koshiba M, Sugiyama T, Yoshida O (1991) Allelic loss at chromosome 3p characterizes clear cell phenotype of renal cell carcinoma. Cancer Res 51:949–953

    PubMed  CAS  Google Scholar 

  • Ohh M, Yauch RL, Lonergan KM et al. (1998) The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1:959–968

    PubMed  CAS  Google Scholar 

  • Oosterwijk E, Ruiter DJ, Hoedemaeker PJ et al. (1986) Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer 38:489–494

    PubMed  CAS  Google Scholar 

  • Pagliaro L, Daliani D, Amato R et al. (2000) A phase II trial of bryostatin-1 for patients with metastatic renal cell carcinoma. Cancer 89:615–618

    PubMed  CAS  Google Scholar 

  • Pal S, Claffey KP, Dvorak HF, Mukhopadhyay D (1997) The von Hippel-Lindau gene product inhibits vascular perme-ability factor/vascular endothelial growth factor expression in renal cell carcinoma by blocking protein kinase C pathways. J Biol Chem 272:27509–27512

    PubMed  CAS  Google Scholar 

  • Paradis V, Lagha NB, Zeimoura L et al. (2000) Expression of vascular endothelial growth factor in renal cell carcinomas. Virchows Arch 436:351–356

    PubMed  CAS  Google Scholar 

  • Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G (1987) Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci USA 84:6379–6383

    PubMed Central  PubMed  CAS  Google Scholar 

  • Parkin DM, Muir CS (1992) Cancer incidence in five continents. Comparability and quality of data. IARC Sci Publ 120:45–173

    PubMed  Google Scholar 

  • Pathak S, Strong LC, Ferrell RE, Trindade A (1982) Familial renal cell carcinoma with a 3;11 chromosome translocation limited to tumor cells. Science 217:939–941

    PubMed  CAS  Google Scholar 

  • Pause A, Lee S, Worrell RA et al. (1997) The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 94:2156–2161

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pause A, Lee S, Lonergan KM, Klausner RD (1998) The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci USA 95:993–998

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pearson HH (1969) Familial renal tumours. Aust N Z J Surg 38:333–338

    PubMed  CAS  Google Scholar 

  • Pesch B, Haerting J, Ranft U, Klimpel A, Oelschlagel B, Schill W (2000) Occupational risk factors for renal cell carcinoma: agent-specific results from a case-control study in Germany. Int J Epidemiol 29:1014–1024

    PubMed  CAS  Google Scholar 

  • Phillips E, Messing EM (1993) Role of lymphadenectomy in the treatment of renal cell carcinoma. Urology 41:9–15

    PubMed  CAS  Google Scholar 

  • Poston CD, Jaffe GS, Lubensky IA et al. (1995) Characterization of the renal pathology of a familial form of renal cell carcinoma associated with von Hippel-Lindau disease: clinical and molecular genetic implications. J Urol 153:22–26

    PubMed  CAS  Google Scholar 

  • Press GA, McClennan BL, Melson GL, Weyman PJ, Mauro MA, Lee JK (1984) Papillary renal cell carcinoma: CT and sonographic evaluation. AJR Am J Roentgenol 143:1005–1009

    PubMed  CAS  Google Scholar 

  • Puga A, Nebert DW, McKinnon RA, Menon AG (1997) Genetic polymorphisms in human drug-metabolizing enzymes: potential uses of reverse genetics to identify genes of toxicological relevance. Crit Rev Toxicol 27:199–222

    PubMed  CAS  Google Scholar 

  • Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272:11205–11214

    PubMed  CAS  Google Scholar 

  • Ramp U, Reinecke P, Gabbert HE, Gerharz CD (2000) Differential response to transforming growth factor (TGF)-alpha and fibroblast growth factor (FGF) in human renal cell carcinomas of the clear cell and papillary types. Eur J Cancer 36:932–941

    PubMed  CAS  Google Scholar 

  • Richards FM, Schofield PN, Fleming S, Maher ER (1996) Expression of the von Hippel-Lindau disease tumour suppressor gene during human embryogenesis. Hum Mol Genet 5:639–644

    PubMed  CAS  Google Scholar 

  • Robson CJ, Churchill BM, Anderson W (1969) The results of radical nephrectomy for renal cell carcinoma. J Urol 101:297–301

    PubMed  CAS  Google Scholar 

  • Roth JS, Rabinowitz AD, Benson M, Grossman ME (1993) Bilateral renal cell carcinoma in the Birt-Hogg-Dube syndrome. J Am Acad Dermatol 29:1055–1056

    PubMed  CAS  Google Scholar 

  • Russo P (2000) Renal cell carcinoma: presentation, staging, and surgical treatment. Semin Oncol 27:160–176

    PubMed  CAS  Google Scholar 

  • Sahin U, Tureci O, Schmitt H et al. (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813

    PubMed Central  PubMed  CAS  Google Scholar 

  • Salceda S, Caro J (1997) Hypoxia-inducible factor 1a1pha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647

    PubMed  CAS  Google Scholar 

  • Sampson JR (1996) The kidney in tuberous sclerosis: manifestations and molecular genetic mechanisms. Nephrol Dial Transplant 11:34–37

    PubMed  Google Scholar 

  • Sato K, Tsuchiya N, Sasaki R et al. (1999) Increased serum levels of vascular endothelial growth factor in patients with renal cell carcinoma. Jpn J Cancer Res 90:874–879

    PubMed  CAS  Google Scholar 

  • Schlehofer B, Pommer W, Mellemgaard A et al. (1996) International renal-cell-cancer study. VI. The role of medical and family history. Int J Cancer 66:723–726

    PubMed  CAS  Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    PubMed  CAS  Google Scholar 

  • Schmidt L, Duh FM, Chen F et al. (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16:68–73

    PubMed  CAS  Google Scholar 

  • Schmidt L, Junker K, Nakaigawa N et al. (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas.Oncogene 18:2343–2350

    PubMed  CAS  Google Scholar 

  • Schoenfeld AR, Parris T, Eisenberger A et al. (2000) The von Hippel-Lindau tumor suppressor gene protects cells from UV-mediated apoptosis. Oncogene 19:5851–5857

    PubMed  CAS  Google Scholar 

  • Schulz WA (1998) DNA methylation in urological malignancies.Int J Oncol 13:151–167

    PubMed  CAS  Google Scholar 

  • Seizinger BR, Rouleau GA, Ozelius LJ et al. (1988) Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332:268–269

    PubMed  CAS  Google Scholar 

  • Semenza GL (1998) Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis. J Lab Clin Med 131:207–214

    PubMed  CAS  Google Scholar 

  • Shuin T, Kondo K, Torigoe S et al. (1994) Frequent somatic mutations and loss of heterozygosity of the von HippelLindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 54:2852–2855

    PubMed  CAS  Google Scholar 

  • Siemeister G, Weindei K, Mohrs K, Barleon B, Martiny-Baron G, Marme D (1996) Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 56:2299–2301

    PubMed  CAS  Google Scholar 

  • Solomon E, Bodmer WF (1979) Evolution of sickle variant gene. Lancet 1:923

    PubMed  CAS  Google Scholar 

  • Stebbins CE, Kaelin WG Jr, Pavletich NP (1999) Structure of the VHL-Elongin C-Elongin B complex: implications for VHL tumor suppressor function. Science 284:455–461

    PubMed  CAS  Google Scholar 

  • Steinbach F, Stöckle M, Riedmiller H, Weingartner K, Hohenfellner R (1991) Tumor enucleation of renal cell carcinoma: operative technique, DNA cytometry results, complications. Prog Clin Biol Res 370:1–7

    PubMed  CAS  Google Scholar 

  • Steinbach F, Stöckle M, Müller SC et al. (1992) Conservative surgery of renal cell tumors in 140 patients: 21 years of experience. J Urol 148:24–30

    PubMed  CAS  Google Scholar 

  • Steinbach F, Stöckle M, Griesinger A et al. (1994) Multifocal renal cell tumors: a retrospective analysis of 56 patients treated with radical nephrectomy. J Urol 152:1393–1396

    PubMed  CAS  Google Scholar 

  • Stolle C, Glenn G, Zbar B et al. (1998) Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum Mutat 12:417–423

    PubMed  CAS  Google Scholar 

  • Störkel S, Keymer R, Steinbach F, Thoenes W (1992) Reaction patterns of tumor infiltrating lymphocytes in different renal cell carcinomas and oncocytomas. Prog Clin Biol Res 378:217–223

    PubMed  Google Scholar 

  • Störkel S, Eble JN, Adlakha K et al. (1997) Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 80:987–989

    PubMed  Google Scholar 

  • Sugimura K, Yoshida N, Hisatomi H, Nakatani T, Ikemoto S (1999) Telomerase in human renal cell carcinoma. B J Urol Int 83:693–697

    CAS  Google Scholar 

  • Teh BT, Giraud S, Sari NF et al. (1997) Familial non-VHL non-papillary clear-cell renal cancer. Lancet 349:848–849

    PubMed  CAS  Google Scholar 

  • Thoenes W, Störkel S, Rumpelt HJ (1986) Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics.Pathol Res Pract 181:125–143

    PubMed  CAS  Google Scholar 

  • Thoenes W, Störkel S, Rumpelt HJ, Moll R (1990) Cytomorphological typing of renal cell carcinoma-a new approach. Eur Urol 18:6–9

    PubMed  Google Scholar 

  • Tisherman SE, Tisherman BG, Tisherman SA, Dunmire S, Levey GS, Mulvihill JJ (1993) Three-decade investigation of familial pheochromocytoma. An allele of von HippelLindau disease? Arch Intern Med 153:2550–2556

    PubMed  CAS  Google Scholar 

  • Tomisawa M, Tokunaga T, Oshika Y et al. (1999) Expression pattern of vascular endothelial growth factor isoform is closely correlated with tumour stage and vascularisation in renal cell carcinoma. Eur J Cancer 35:133–137

    PubMed  CAS  Google Scholar 

  • Toro JR, Glenn G, Duray P et al. (1999) Birt-Hogg-Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol 135: 1195–1202

    PubMed  CAS  Google Scholar 

  • Tory K, Brauch H, Linehan M et al. (1989) Specific genetic change in tumors associated with von Hippel-Lindau disease. J Natl Cancer Inst 81:1097–1101

    PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    PubMed  CAS  Google Scholar 

  • Vamvakas S, Bruning T, Thomasson B et al. (1998) Renal cell cancer correlated with occupational exposure to trichloroethene.J Cancer Res Clin Oncol 124:374–382

    PubMed  CAS  Google Scholar 

  • Van den Berg E, Oosterhuis JW, Störkel S et al. (1994) Pathogenesis of renal cell tumors: a cytogenetic model. 44th European Workshop on Cytogenetics and Molecular Genetics of Human Solid Tumors, Noordwijkerhout, The Netherlands, A:45

    Google Scholar 

  • Van der Hout AH, Brown RS, Li PP, Buys CH (1991) Localization by in situ hybridization of three 3p probes with respect to the breakpoint in a t(3;8) in hereditary renal cell carcinoma. Cancer Genet Cytogenet 51:121–124

    PubMed  Google Scholar 

  • Van Slegtenhorst M, Hoogt de R, Hermans C et al. (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808

    PubMed  Google Scholar 

  • Vogelzang NJ, Stadler WM (1998) Kidney cancer. Lancet 352:1691–1696

    PubMed  CAS  Google Scholar 

  • Volkel W, Dekant W (1998) Chlorothioketene, the ultimate reactive intermediate formed by cysteine conjugate betalyase-mediated cleavage of the trichloroethene metabolite S-(1,2-Dichlorovinyl)-L-cysteine, forms cytosine adducts in organic solvents, but not in aqueous solution. Chem Res Toxicol 11:1082–1088

    PubMed  CAS  Google Scholar 

  • Volm M, Pommerenke EW, Efferth T, Lohrke H, Mattern J (1991) Circumvention of multi-drug resistance in human kidney and kidney carcinoma in vitro. Cancer 67:2484–2489

    PubMed  CAS  Google Scholar 

  • Von Hippel E (1904) über eine seltene Erkrankung der Netzhaut. Graefes Arch Ophthalmol 59:83–106

    Google Scholar 

  • Walther MM, Lubensky IA, Venzon D, Zbar B, Linehan WM (1995) Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von HippelLindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J Urol 154:2010–2015

    PubMed  CAS  Google Scholar 

  • Wang N, Perkins KL (1984) Involvement of band 3p14 in t(3;8) hereditary renal carcinoma. Cancer Genet Cytogenet 11:479–481

    PubMed  CAS  Google Scholar 

  • Warburg O (1926) über den Stoffwechsel von Tumoren. Cambridge University Press, Cambridge

    Google Scholar 

  • Washecka R, Hanna M (1991) Malignant renal tumors in tuberous sclerosis. Urology 37:340–343

    PubMed  CAS  Google Scholar 

  • Wechsel HW, Bichler KH, Feil G, Loeser W, Lahme S, Petri E (1999) Renal cell carcinoma: relevance of angiogenetic factors. Anticancer Res 19:1537–1540

    PubMed  CAS  Google Scholar 

  • Weidner U, Peter S, Strohmeyer T, Hussnatter R, Ackermann R, Sies H (1990) Inverse relationship of epidermal growth factor receptor and HER2/neu gene expression in human renal cell carcinoma. Cancer Res 50:4504–4509

    PubMed  CAS  Google Scholar 

  • Weidner KM, Sachs M, Birchmeier W (1993) The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Cell Biol 121:145–154

    PubMed  CAS  Google Scholar 

  • Wenger RH, Gassmann M (1997) Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem 378:609–616

    PubMed  CAS  Google Scholar 

  • Whaley JM, Naglich J, Gelbert L et al. (1994) Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma [published erratum appears in Am J Hum Genet 56:356]. Am J Hum Genet 55:1092–1102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yao M, Latif F, Orcutt ML et al. (1993) Von Hippel-Lindau disease: identification of deletion mutations by pulsed field gel electrophoresis. Hum Genet 92:605–614

    PubMed  CAS  Google Scholar 

  • Ye Y, Vasavada S, Kuzmin I, Stackhouse T, Zbar B, Williams BR (1998) Subcellular localization of the von Hippel-Lindau disease gene product is cell cycle-dependent. Int J Cancer 78:62–69

    PubMed  CAS  Google Scholar 

  • Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR, Knudson AG (1994) Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci USA 91:11413–11416

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshida K, Tosaka A (1994) Epidermal growth factor binding by membranes of human renal cell carcinomas: establishment of an epidermal growth factor receptor assay for clinical use. Int J Urol 1:319–323

    PubMed  CAS  Google Scholar 

  • Yoshida K, Hosoya Y, Sumi S et al. (1997) Studies of the expression of epidermal growth factor receptor in human renal cell carcinoma: a comparison of immunohistochemical method versus ligand bin ding assay. Oncology 54:220–225

    PubMed  CAS  Google Scholar 

  • Yu DS, Chang SY, Ma CP (1998) The expression of mdr-1-related gp-170 and its correlation with anthracycline resistance in renal cell carcinoma cell lines and multidrugresistant sublines. Br J Urol 82:544–547

    PubMed  CAS  Google Scholar 

  • Yu DS, Sun GH, Ma CP, Chang SY (1999) Cocktail modulator mixtures for overcoming multidrug resistance in renal cell carcinoma. Urology 54:377–381

    PubMed  CAS  Google Scholar 

  • Zbar B (1995) Von Hippel-Lindau disease and sporadic renal cell carcinoma. Cancer Surv 25:219–232

    PubMed  CAS  Google Scholar 

  • Zbar B, Lerman M (1998) Inherited carcinomas of the kidney. Adv Cancer Res 75:163–201

    PubMed  CAS  Google Scholar 

  • Zbar B, Brauch H, Talmadge C, Linehan M (1987) Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327:721–724

    PubMed  CAS  Google Scholar 

  • Zbar B, Tory K, Merino M et al. (1994) Hereditary papillary renal cell carcinoma. J Urol 151:561–566

    PubMed  CAS  Google Scholar 

  • Zbar B, Glenn G, Lubensky I et al. (1995a) Hereditary papillary renal cell carcinoma: clinical studies in 10 families. J Urol 153:907–912

    PubMed  CAS  Google Scholar 

  • Zbar B, Glenn G, Lubensky I et al. (1995b) Hereditary papillary renal cell carcinoma: clinical studies in 10 families. J Urol 153:907–912

    PubMed  CAS  Google Scholar 

  • Zbar B, Kishida T, Chen F et al. (1996) Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat8:348–357

    PubMed  CAS  Google Scholar 

  • Zhuang Z, Park WS, Pack S et al. (1998) Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet 20:66–69

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Decker, J., Brauch, H. (2002). Nierenzellkarzinome. In: Ganten, D., Ruckpaul, K., Hahn, S.A., Schmiegel, W. (eds) Molekularmedizinische Grundlagen von nicht-hereditären Tumorerkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56297-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56297-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62572-5

  • Online ISBN: 978-3-642-56297-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics