Molekulare Grundlagen organspezifischer Tumoren: Knochen- und Weichteilsarkome

  • Karl-Ludwig Schäfer
  • Raihanatou Diallo
  • Barbara Dockhorn-Dworniczak
  • Christopher Poremba
Part of the Molekulare Medizin book series (MOLMED)


Sarkome, d. h. maligne mesenchymale Tumoren, der Knochen und des Weichgewebes stellen eine große Gruppe heterogener Tumorentitäten dar. Aus molekularpathologischer Sicht sind zahlreiche dieser Tumoren durch charakteristische, chromosomale Umlagerungen gekennzeichnet (Tabelle 13.1), deren Bestimmung sowohl diagnostisch als auch für das Verständnis der Tumorgenese von hohem Wert ist. In diesem Kapitel werden schwerpunktmäßig die Sarkome behandelt, die durch ebensolche chromosomalen Umlagerungen (Translokationen) charakterisiert sind. Die einzelnen Tumorentitäten werden unter Berücksichtigung der Inzidenz und Epidemiologie, ätiologie, Pathogenese, Pathologie einschließlich molekularer Diagnostik sowie der Tumorbiologie vorgestellt.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams V, Hany MA, Schmid M, Hassam S, Briner J, Niggli FK (1996) Detection of t(11;22)(q24;q12) translocation breakpoint in paraffin-embedded tissue of the Ewing’s sarcoma family by nested reverse transcription-polymerase chain reaction. Diagn Mol Pathol 5:107–113PubMedGoogle Scholar
  2. Ahrens S, Hoffmann C, Jabar S et al. (1999) Evaluation of prognostic factors in a tumor volume-adapted treatment strategy for localized Ewing sarcoma of bone: the CESS 86 experience. Cooperative Ewing Sarcoma Study. Med Pediatr Oncol 32:186–195Google Scholar
  3. Alava E de, Kawai A, Healey JH et al. (1998) EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma [published erratum appears in J Clin Oncol 1998 16:2895]. J Clin Oncol 16:1248–1255PubMedGoogle Scholar
  4. Alvegard TA, Berg NO, for the Scandinavian Sarcoma Group (1989) Histopathology peer review of high-grade soft tissue sarcoma: the Scandinavian Sarcoma Group experience. J Clin Oncol 7:1845–1851PubMedGoogle Scholar
  5. Ambros IM, Ambros PF, Strehl S et al. (1991) MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67:1886–1893PubMedGoogle Scholar
  6. Anderson J, Renshaw J, McManus A et al. (1997) Amplification of the t(2;13) and t(1;13) translocations of alveolar rhabdomyosarcoma in small formalin-fixed biopsies using a modified reverse transcriptase polymerase chain reaction. Am J Pathol 150:477–482PubMedCentralPubMedGoogle Scholar
  7. Anderson J, Gordon A, Pritchard-Jones K, Shipley J (1999) Genes, chromosomes, and rhabdomyosarcoma. Genes Chromosomes Cancer 26:275–285PubMedGoogle Scholar
  8. Antonescu CR, Kawai A, Leung DH et al. (2000) Strong association of SYT-SSX fusion type and morphologie epithelial differentiation in synovial sarcoma. Diagn Mol Pathol9:1–8PubMedGoogle Scholar
  9. Argani P, Perez Ordonez B et al. (1998) Olfactory neuroblastoma is not related to the Ewing family of tumors: absence of EWS/FLI1 gene fusion and MIC2 expression. Am J Surg Pathol 22:391–398PubMedGoogle Scholar
  10. Argani P, Zakowski MF, Klimstra DS, Rosai J, Ladanyi M (1998) Detection of the SYT-SSX chimeric RNA of synovial sarcoma in paraffin-embedded tissue and its application in problematic cases. Mod Pathol 11:65–71PubMedGoogle Scholar
  11. Armengoi G, Tarkkanen M, Virolainen M et al. (1997) Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br J Cancer 75:1403–1409Google Scholar
  12. Arvand A, Bastians H, Welford SM, Thompson AD, Ruderman JV, Denny CT (1998) EWS/FLI1 up regulates mE2-C, a cyclin-selective ubiquitin conjugating enzyme involved in cyclin B destruction. Oncogene 17:2039–2045PubMedGoogle Scholar
  13. Askin FB, Rosai J, Sibley RK, Dehner LP, McAlister WH (1979) Malignant small cell tumor of the thoracopulmonary cregion in childhood: a distinctive clinieopathologie entity of uncertain histogenesis. Cancer 4:2438–2451Google Scholar
  14. Azumi N, Ben Ezra J, Battifora H (1988) Immunophenotypic diagnosis of leiomyosarcomas and rhabdomyosarcomas with monoclonal antibodies to muscle-specific actin and desmin in formalin-fixed tissue. Mod Pathol 1:469–474PubMedGoogle Scholar
  15. Bailly RA, Bosselut R, Zucman J (1994) DNA-binding and btranscriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 14:3230–3241PubMedCentralPubMedGoogle Scholar
  16. Baker KS, Anderson JR, Link MP et al. (2000) Benefit of intensified therapy for patients with local or regional embryonal rhabdomyosarcoma: results from the Intergroup Rhabdomyosarcoma Study IV, J Clin Oncol 18:2427–2434PubMedGoogle Scholar
  17. Barr FG (1997) Molecular genetics and pathogenesis of rhabdomyosarcoma. J Pediatr Hematol Oncol 19:483-491Google Scholar
  18. Barr FG, Chatten J, D’Cruz CM et al. (1995) Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA 273:553–557PubMedGoogle Scholar
  19. Barr FG, Xiong QB, Kelly K (1995) A consensus polymerase chain reaction-oligonucleotide hybridization approach for the detection of chromosomal translocations in pediatric bone and soft tissue sarcomas. Am J Clin Pathol 104:627–633PubMedGoogle Scholar
  20. Bennicelli JL, Advani S, Schafer BW, Barr FG (1999) PAX3 and PAX7 exhibit conserved cis-acting transcription repression domains and utilize a common gain of function mechanism in alveolar rhabdomyosarcoma. Oncogene 18:4348–4356PubMedGoogle Scholar
  21. Brett D, Whitehouse S, Antonson P, Shipley J, Cooper C, Goodwin G (1997) The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Hum Mol Genet 6:1559–1564PubMedGoogle Scholar
  22. Brinkschmidt C, Poremba C, Schafer KL et al. (1998) Evidence of genetic alterations in chromosome 11 in embryonal and alveolar rhabdomyosarcoma. Verh Dtsch Ges Pathol 82:210–214PubMedGoogle Scholar
  23. Casola S, Pedone PV; Cavazzana AO et al. (1997) Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma.Oncogene 14:1503–1510PubMedGoogle Scholar
  24. Chibon F, Mairal A, Freneaux P et al. (2000) The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 60:6339–6345PubMedGoogle Scholar
  25. Choong PF, Mandahl N, Mertens F et al. (1996) 19p+ marker chromosome correlates with relapse in malignant fibrous histiocytoma. Genes Chromosomes Cancer 16:88–93PubMedGoogle Scholar
  26. Clark J, Rocques PJ, Crew AJ et al. (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18) (p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508PubMedGoogle Scholar
  27. Crew AJ, Clark J, Fisher C et al. (1995) Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 14:2333–2340PubMedCentralPubMedGoogle Scholar
  28. Crist W, Gehan EA, Ragab AH et al. (1995) The Third Intergroup Rhabdomyosarcoma Study. J Clin Oncol 13:610–630PubMedGoogle Scholar
  29. Dardick I, O’Brien PK, Jeans MT, Massiah KA (1982) Synovial sarcoma arising in an anatomieal bursa. Virchows Arch A 397:93–101Google Scholar
  30. Davis RJ, Barr FG (1997) Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 94:8047–8051PubMedCentralPubMedGoogle Scholar
  31. Del Tos AP, Dal Cin P (1997) The role of cytogenetics in the classification of soft tissue tumours. Virchows Arch 431:83–94Google Scholar
  32. Del Tos AP, Wadden C, Calonje E et al. (1995) Immunohistochemical demonstration of glycoprotein p30/32mic2 (CD99) in synovial sarcoma. A potential cause for diagnostic confusion. Appl Immunohistochem 3:168–173Google Scholar
  33. Delattre O, Zucman J, Plougastel B et al. (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359:162–165PubMedGoogle Scholar
  34. Delattre O, Zucman J, Melot T et al. (1994) The Ewing family of tumors-a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331:294–299PubMedGoogle Scholar
  35. Desmaze C, Zucman J, Delattre O, Melot T, Thomas G, Aurias A (1994) Interphase molecular cytogenetics of Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) with flanking and overlapping cosmid probes. Cancer Genet Cytogenet 74:13–18PubMedGoogle Scholar
  36. Desmaze C, Brizard F, Turc-Carel C et al. (1997) Multiple chromosomal mechanisms generate an EWS/FLI1 or an EWS/ERG fusion gene in Ewing tumors. Cancer Genet Cytogenet 97:12–19PubMedGoogle Scholar
  37. Dickersin GR, Rosenberg AE (1991) The ultrastructure of small-cell osteosarcoma, with a review of the light microscopy and differential diagnosis. Hum Pathol 22:267–275PubMedGoogle Scholar
  38. Dockhorn Dworniczak B, Schafer KL, Dantcheva R et al. (1994) Diagnostic value of the molecular genetic detection of the t( 11;22) translocation in Ewing’s tumours. Virchows Arch 425:107–112Google Scholar
  39. Dockhorn Dworniczak B, Wolff J, Poremba C et al. (1996) A new germline TP53 gene mutation in a family with LiFraumeni syndrome. Eur J Cancer 32A:1359–1365Google Scholar
  40. Dockhorn Dworniczak B, Schafer KL, Blasius S et al. (1997) Assessment of molecular genetic detection of chromosome translocations in the differential diagnosis of pediatric sarcomas. Klin Pädiatr 209:156–164PubMedGoogle Scholar
  41. Donaldson LW, Petersen JM, Graves BJ, McIntosh LP (1996) Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif. EMBO J15:125–134PubMedCentralPubMedGoogle Scholar
  42. Douglass EC, Rowe ST, Valentine M, Parham D, Meyer WH, Thompson EI (1990) A second nonrandom translocation, der(16)t(1;16)(q21;q13), in Ewing sarcoma and peripheral neuroectodermal tumor. Cytogenet Cell Genet 53:87–90PubMedGoogle Scholar
  43. Downing JR, Head DR, Parharn DM et al. (1993) Detection of the (11;22)(q24;q12) translocation of Ewing’s sarcoma and peripheral neuroectodermal tumor by reverse transcription polymerase chain reaction.Am J Pathol 143:1294–1300PubMedCentralPubMedGoogle Scholar
  44. Downing JR, Khandekar A, Shurtleff SA et al. (1995) Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing’s sarcoma. Am J Pathol 146:626–634PubMedCentralPubMedGoogle Scholar
  45. Edwards RH, Chatten J, Xiong QB, Barr FG (1997) Detection of gene fusions in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction assay of archival samples. Diagn Mol Pathol 6:91–97PubMedGoogle Scholar
  46. el-Sabrout R, Gruber SA (1997) Etiology and pathogenesis of posttransplant tumors: new insights into viral oncogenesis. Ann Transplant 2:67–69PubMedGoogle Scholar
  47. Fagnou C, Michon J, Peter M et al. (1998) Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing’s tumor. Societe Francaise d’Oncologie Pediatrique. J Clin Oncol 16: 1707–1711PubMedGoogle Scholar
  48. Fellinger EJ, Garin Chesa P, Triche TJ, Huvos AG, Rettig WJ (1991) Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol 139:317–325PubMedCentralPubMedGoogle Scholar
  49. Fisher C (1990) The value of electronmicroscopy and immunohistochemistry in the diagnosis of soft tissue sarcomas: a study of 200 cases. Histopathology 16:441–454PubMedGoogle Scholar
  50. Fletcher JA (1994) Cytogenetics and experimental models of sarcomas. Curr Opin Oncol 6:367–371PubMedGoogle Scholar
  51. Gaynor JJ, Tan CC, Casper ES et al. (1992) Refinement of clinicopathologic staging for localized soft tissue sarcoma of the extremity: a study of 423 adults. J Clin Oncol 10:1317–1329PubMedGoogle Scholar
  52. Ginsberg JP, Alava E de, Ladanyi M et al. (1999) EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol 17:1809–1814PubMedGoogle Scholar
  53. Goedert JJ (2000) The epidemiology of acquired immunodeficiency syndrome malignancies. Semin Oncol 27:390–401PubMedGoogle Scholar
  54. Gordon T, McManus A, Anderson J et al. (2001) Cytogenetic abnormalities in 42 rhabdomyosarcoma: a United Kingdom Cancer Cytogenetics Group Study. Med Pediatr Oncol36:259–267PubMedGoogle Scholar
  55. Granowetter L (1992) Ewing’s sarcoma and extracranial primitive neuroectodermal tumors. Curr Opin Oncol 4:696–703PubMedGoogle Scholar
  56. Guccion JG, Enzinger FM (1979) Malignant Schwannoma associated with von Recklinghausen’s neurofibromatosis. Virchows Arch A 383:43–57Google Scholar
  57. Gusterson B, Shipley J, Crew J (1994) Application of molecular genetics and cytogenetics to breast cancer and soft tissue sarcomas. Ann Oncol [Suppl 4] 5:17–23PubMedGoogle Scholar
  58. Hachitanda Y, Toyoshima S, Akazawa K, Tsuneyoshi M (1998) N-myc gene amplification in rhabdomyosarcoma detected by fluorescence in situ hybridization: its correlation with histologix features. Mod Pathol 11:1222–1227PubMedGoogle Scholar
  59. Hahm KB, Cho K, Lee C et al. (1999) Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet 23:222–227PubMedGoogle Scholar
  60. Hartley AL, Blair V, Harris M et al. (1993) Multiple primary tumours in a population-based series of patients with histopathologically peer-reviewed sarcomas. Br J Cancer 68:1243–1246PubMedCentralPubMedGoogle Scholar
  61. Hasegawa SL, Davison JM, Rutten A, Fletcher JA, Fletcher CD (1998) Primary cutaneous Ewing’s sarcoma: immunophenotypic and molecular cytogenetic evaluation of five cases. Am J Surg Pathol 22:310–318PubMedGoogle Scholar
  62. Hattinger CM, Rumpier S, Ambros IM et al. (1996) Demonstration of the translocation der(16)t(1;16)(q12;q11.2) in interphase nuclei of Ewing tumors. Genes Chromosomes Cancer 17:141–150PubMedGoogle Scholar
  63. Hattinger CM, Rumpier S, Strehl S et al. (1999) Prognostic impact of deletions at 1 p36 and numerical aberrations in Ewing tumors. Genes Chromosomes Cancer 24:243–254PubMedGoogle Scholar
  64. Hisaoka M, Tsuji S, Morimitsu Y (1998) Detection of TLS/FUS-CHOP fusion transcripts in myxoid and round cell liposarcomas by nested reverse transcription-polymerase chain reaction using archival paraffin-embedded tissues. Diagn Mol Pathol 7:96–101PubMedGoogle Scholar
  65. Ida K, Kobayashi S, Taki T et al. (1995) EWS-FLI-1 and EWSERG chimeric mRNAs in Ewing’s sarcoma and primitive neuroectodermal tumor. Int J Cancer 63:500–504PubMedGoogle Scholar
  66. Im YH, Kim HT, Lee C et al. (2000) EWS-FLI1, EWS-ERG, and EWS-ETVI oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res 60:1536–1540PubMedGoogle Scholar
  67. Jeon IS, Davis JN, Braun BS et al. (1995) A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10:1229–1234PubMedGoogle Scholar
  68. Johnson ES (1994) Poultry oncogenic retroviruses and humans. Cancer Detect Prev 18:9–30PubMedGoogle Scholar
  69. Kaneko Y, Yoshida K, Handa M et al. (1996) Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 15:115–121PubMedGoogle Scholar
  70. Kawai A, Woodruff J, Healey JH, Brennan MF, Antonescu CR, Ladanyi M (1998) SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 338:153–160PubMedGoogle Scholar
  71. Kelly KM, Womer RB, Sorensen PH, Xiong QB, Barr FG (1997) Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol 15:1831–1836PubMedGoogle Scholar
  72. Knezevieh SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE, Sorensen PH (1998) ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastie nephroma and congenital fibrosarcoma. Cancer Res 58:5046–5048Google Scholar
  73. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18:184–187PubMedGoogle Scholar
  74. Kovar H, Auinger A, Jug G et al. (1993) Narrow spectrum of infrequent p53 mutations and absence of MDM 2 amplification in Ewing tumours. Oncogene 8:2683–2690PubMedGoogle Scholar
  75. Kovar H, Aryee DN, Jug G et al. (1996) EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ 7:429–437PubMedGoogle Scholar
  76. Kovar H, Jug G, Aryee DN et al. (1997) Among genes involved in the RB dependent cell cyde regulatory cascade, the p 16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene 15:2225–2232PubMedGoogle Scholar
  77. Kransdorf MJ (1995) Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location. Am J Roentgenol 164:129–134Google Scholar
  78. Kumar S, Pack S, Kumar D et al. (1999) Detection of EWSFLI-1 fusion in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor by fluorescence in situ hybridization using formalin-fixed paraffin-embedded tissue. Hum Pathol 30:324–330PubMedGoogle Scholar
  79. Kumar S, Perlman E, Pack S et al. (1999) Absence of EWS/FLI1 fusion in olfactory neuroblastomas indicates these tumors do not belong to the Ewing’s sarcoma family. Hum Pathol 30:1356–1360PubMedGoogle Scholar
  80. Ladanyi M, Bridge JA (2000) Contribution of molecular genetic data to the dassification of sarcomas. Hum Pathol 31:532–538PubMedGoogle Scholar
  81. Ladanyi M, Lewis R, Jhanwar SC, Gerald W, Huvos AG, Healey JH (1995) MDM2 and CDK4 gene amplification in Ewing’s sarcoma. J Pathol 175:211–217PubMedGoogle Scholar
  82. Lee CS, Southey MC, Slater H, Auldist AW, Chow CW, Venter DJ (1995) Primary cutaneous Ewing’s sarcoma/peripheral primitive neuroectodermal tumors in childhood. A molecular, cytogenetic, and immunohistochemical study. Diagn Mol Pathol 4:174–181PubMedGoogle Scholar
  83. Legius E, Dierick H, Wu R et al. (1994) TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer 10:250–255PubMedGoogle Scholar
  84. Leuschner I, Newton WA, Schmidt D et al. (1993) Spindle cell variants of embryonal rhabdomyosarcoma in the paratesticular region. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol 17:221–230PubMedGoogle Scholar
  85. Lin PP, Brody RI, Hamelin AC, Bradner JE, Healey JH, Ladanyi M (1999) Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing’s sarcoma. Cancer Res 59:1428–1432PubMedGoogle Scholar
  86. Lu YJ, Birdsall S, Summersgill B et al. (1999) Dual colour fluorescence in situ hybridization to paraffin-embedded samples to deduce the presence of the der(X)t(X;18) (p11.2;q11.2) and involvement of either the SSX1 or SSX2 gene: a diagnostic and prognostic aid for synovial sarcoma. J Pathol 187:490–496PubMedGoogle Scholar
  87. Maillet MW, Robinson RA, Burgart LJ et al. (1992) Genomic alterations in sarcomas: a histologic correlative study with use of oncogene panels. Mod Pathol 5:410–414PubMedGoogle Scholar
  88. Malkin D, Li FP, Strong LC et al. (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238PubMedGoogle Scholar
  89. Mark RJ, Poen J, Tran LM, Fu YS, Selch MT, Parker RG (1994) Postirradiation sarcomas. A single institution study and review of the literature. Cancer 73:2653–2662PubMedGoogle Scholar
  90. May WA, Lessnick SL, Braun BS et al. (1993) The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 13:7393–7398PubMedCentralPubMedGoogle Scholar
  91. May WA, Arvand A, Thompson AD, Braun BS, Wright M, Denny CT (1997) EWS/FLI1-induced manic fringe renders NIH 3T3 cells tumorigenic. Nat Genet 17:495–497PubMedGoogle Scholar
  92. McManus AP, Gusterson BA, Pinkerton CR, Shipley JM (1995) Diagnosis of Ewing’s sarcoma and related tumours by detection of chromosome 22q12 translocations using fluorescence in situ hybridization on tumour touch imprints. J Pathol 176:137–142PubMedGoogle Scholar
  93. Mertens F, Rydholm A, Bauer HF et al. (1995) Cytogenetic findings in malignant peripheral nerve sheath tumors. Int J Cancer 61:793–798PubMedGoogle Scholar
  94. Mertens F, Dal Cin P, De Wever I et al. (2000) Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP study group. J Pathol 190:31–38PubMedGoogle Scholar
  95. Mezzelani A, Tornielli S, Minoletti F, Pierotti MA, Sozzi G, Pilotti S (1999) Esthesioneuroblastoma is not a member of the primitive peripheral neuroectodermal tumour Ewing’s group. Br J Cancer 81:586–591PubMedCentralPubMedGoogle Scholar
  96. Minniti CP, Tsokos M, Newton WA, Helman LJ (1994) Specific expression of insulin-like growth factor-II in rhabdomyosarcoma tumor cells. Am J Clin Pathol 101:198–203PubMedGoogle Scholar
  97. Monforte Munoz H, Lopez Terrada D, Affendie H, Rowland JM, Triche TJ (1999) Documentation of EWS gene rearrangements by fluorescence in-situ hybridization (FISH) in frozen sections of Ewing’s sarcoma-peripheral primitive neuroectodermal tumor. Am J Surg Pathol 23:309–315Google Scholar
  98. Murray EM, Werner D, Greeff EA, Taylor DA (1999) Postradiation sarcomas: 20 cases and a literature review. Int J Radiat Oncol Biol Phys 45:951–961PubMedGoogle Scholar
  99. Nagao K, Ito H, Yoshida H et al. (1997) Chromosomal rearrangement t(11;22) in extraskeletal Ewing’s sarcoma and primitive neuroectodermal tumour analysed by fluorescence in situ hybridization using paraffin-embedded tissue. J Pathol 181:62–66PubMedGoogle Scholar
  100. Nakajima H, Sim FH, Bond JR, Unni KK (1997) Small cell osteosarcoma of bone. Review of 72 cases. Cancer 79:2095–2106PubMedGoogle Scholar
  101. Newton WA, Gehan EA, Webber BL et al. (1995) Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new dassification-an Intergroup Rhabdomyosarcoma Study. Cancer 76:1073–1085PubMedGoogle Scholar
  102. Noguera R, Navarro S, Triche TJ (1990) Translocation (11;22) in small cell osteosarcoma. Cancer Genet Cytogenet 45:121–124PubMedGoogle Scholar
  103. Ohno T, Rao VN, Reddy ES (1993) EWS/Fli-1 chimeric protein is a transcriptional activator. Cancer Res 53:5859–5863PubMedGoogle Scholar
  104. Ohno T, Ouchida M, Lee L, Gatalica Z, Rao VN, Reddy ES (1994) The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene 9:3087–3097PubMedGoogle Scholar
  105. Ordonez NG, Mahfouz SM, Mackay B (1990) Synovial sarcoma: an immunohistochemical and ultrastructural study. Hum Pathol 21:733–749PubMedGoogle Scholar
  106. Ouchida M, Ohno T, Fujimura Y, Rao VN, Reddy ES (1995) Loss of tumorigenicity of Ewing’s sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene 11:1049–1054PubMedGoogle Scholar
  107. Panagopoulos I, Hoglund M, Mertens F, Mandahl N, Mitelman F, Aman P (1996) Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene 12:489–494PubMedGoogle Scholar
  108. Paulussen M, Ahrens S, Braun Munzinger G et al. (1999) EICESS 92 (European Intergroup Cooperative Ewing’s Sarcoma Study)-preliminary results. Klin Pädiatr 211:276–283PubMedGoogle Scholar
  109. Pawel BR, Hamoudi AB, Asmar L et al. (1997) Undifferentiated sarcomas of children: pathology and clinical behavior-an Intergroup Rhabdomyosarcoma Study. Med Pediatr Oncol 29:170–180PubMedGoogle Scholar
  110. Penn I (1994) Depressed immunity and the development of cancer. Cancer Detect Prev 18:241–252PubMedGoogle Scholar
  111. Peso L del, Gonzalez VM, Hernandez R, Barr FG, Nunez G (1999) Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 18:7328–7333PubMedGoogle Scholar
  112. Peter M, Magdelenat H, Michon J et al. (1995) Sensitive detection of occult Ewing’s cells by the reverse transcriptase-polymerase chain reaction. Br J Cancer 72:96–100PubMedCentralPubMedGoogle Scholar
  113. Peter M, Couturier J, Pacquement H et al. (1997) A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 14: 1159–1164PubMedGoogle Scholar
  114. Petermann R, Mossier BM, Aryee DN, Khazak V, Golemis EA, Kovar H (1998) Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase H. Oncogene 17:603–610PubMedGoogle Scholar
  115. Pfleiderer C, Zoubek A, Gruber B et al. (1995) Detection of tumour cells in peripheral blood and bone marrow from Ewing tumour patients by RT-PCR. Int J Cancer 64:135–139PubMedGoogle Scholar
  116. Poremba C, Bankfalvi A, Dockhorn Dworniczak B (1996) Tumor suppressor gene p53. Theoretical principles and their significance for pathology. Pathologe 17:181–188PubMedGoogle Scholar
  117. Prasad DD, Rao VN, Reddy ES (1992) Structure and expression of human Fli-1 gene. Cancer Res 52:5833–5837PubMedGoogle Scholar
  118. Price CH, Jeffree GM (1977) Incidence of bone sarcoma in SW England 1946-74, in relation to age, sex, tumour site and histology. Br J Cancer 36:511–522PubMedCentralPubMedGoogle Scholar
  119. Qualman SJ, Coffin CM, Newton WA et al. (1998) Intergroup Rhabdomyosarcoma Study: update for pathologists. Pediatr Dev Pathol 1:550–561PubMedGoogle Scholar
  120. Reeves BR, Smith S, Fisher C et al. (1989) Characterization of the translocation between chromosomes X and 18 in human synovial sarcomas. Oncogene 4:373–378PubMedGoogle Scholar
  121. Rodary C, Gehan EA, Flamant F et al. (1991) Prognostic factors in 951 nonmetastatic rhabdomyosarcoma in children: a report from the International Rhabdomyosarcoma Workshop. Med Pediatr Oncol 19:89–95PubMedGoogle Scholar
  122. Ruymann FB, Grovas AC (2000) Progress in the diagnosis and treatment of rhabdomyosarcoma and related soft tissue sarcomas. Cancer Invest 18:223–241PubMedGoogle Scholar
  123. Santos NR dos, Bruijn DR de, Balemans M et al. (1997) Nuclear localization of SYT, SSX and the synovial sarcomaassociated SYT-SSX fusion proteins. Hum Mol Genet 6:1549–1558PubMedGoogle Scholar
  124. Schmidt D, Herrmann C, Jürgens H, Harms D (1991) Malignant peripheral neuroectodermal tumor and its necessary distinction from Ewing’s sarcoma. A report from the Kiel Pediatric Tumor Registry. Cancer 68:2251–2259PubMedGoogle Scholar
  125. Scrable H, Cavenee W, Ghavimi F, Lovell M, Morgan K, Sapienza C (1989) A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci USA 86:7480–7484PubMedCentralPubMedGoogle Scholar
  126. Shipley J, Fisher C (1998) Chromosome translocations in sarcomas and the analysis of paraffin-embedded material. J Pathol 184:1–3PubMedGoogle Scholar
  127. Shipley JM, Clark J, Crew AJ et al. (1994) The t(X;18) (p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453PubMedGoogle Scholar
  128. Shmookler BM, Enzinger FM, Brannon RB (1982) Orofacial synovial sarcoma: a clinicopathologic study of 11 new cases and review of the literature. Cancer 50:269–276PubMedGoogle Scholar
  129. Silvestris N (1999) AIDS-related Kaposi’s sarcoma: prineipal pathogenic mechanisms. J Exp Clin Cancer Res 18:311–315PubMedGoogle Scholar
  130. Smith TA, Machen SK, Fisher C, Goldblum JR (1999) Usefulness of cytokeratin subsets for distinguishing monophasic synovial sarcoma from malignant peripheral nerve sheath tumor. Am J Clin Pathol 112:641–648PubMedGoogle Scholar
  131. Sorensen SA, Mulvihill JJ, Nielsen A (1986) Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med 314: 1010–1015PubMedGoogle Scholar
  132. Sorensen PH, Liu X.F., Delattre O et al. (1993) Reverse transcriptase PCR amplification of EWS/FLI-1 fusion transcripts as a diagnostic test for peripheral primitive neuroectodermal tumors of childhood. Diagn Mol Pathol 2:147–157PubMedGoogle Scholar
  133. Sorensen PH, Wu JK, Berean KW et al. (1996) Olfactory neuroblastoma is a peripheral primitive neuroectodermal tumor related to Ewing sarcoma. Proc Natl Acad Sci USA 93:1038–1043PubMedCentralPubMedGoogle Scholar
  134. Spillane AJ, A’Hern R, Judson I.R., Fisher C, Thomas JM (2000) Synovial sarcoma: a clinicopathologic, staging, and prognostic assessment. J Clin Oncol 18:3794–3803PubMedGoogle Scholar
  135. Stark B, Mor C, Jeison M et al. (1997) Additional chromosome 1q aberrations and der(16)t(1;16), correlation to the phenotypic expression and clinical behavior of the Ewing family of tumors. J Neurooncol 31:3–8PubMedGoogle Scholar
  136. Stiller CA, Parkin DM (1996) Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull 52:682–703PubMedGoogle Scholar
  137. Suster S, Fisher C, Moran CA (1998) Expression of bcl-2 oncoprotein in benign and malignant spindle cell tumors of soft tissue, skin, serosal-surfaces, and gastrointestinal tract. Am J Surg Pathol 22:863–872PubMedGoogle Scholar
  138. Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y (1997) EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest 99:239–247PubMedCentralPubMedGoogle Scholar
  139. Tarkkanen M, Aaltonen LA, Bohling T et al. (1996) No evidence of microsatellite instability in bone tumours. Br J Cancer 74:453–455PubMedCentralPubMedGoogle Scholar
  140. Taylor C, Patel K, Jones T, Kiely F, De Stavola BL, Sheer D (1993) Diagnosis of Ewing’s sarcoma and peripheral neuroectodermal tumour based on the detection of t(11;22) using fluorescence in situ hybridisation. Br J Cancer 67:128–133PubMedCentralPubMedGoogle Scholar
  141. Terrier P, Llombart Bosch A, Contesso G (1996) Small round blue cell tumors in bone: prognostic factors correlated to Ewing’s sarcoma and neuroectodermal tumors. Semin Diagn Pathol 13:250–257PubMedGoogle Scholar
  142. Thelin Jarnum S, Lassen C, Panagopoulos I, Mandahl N, Aman P (1999) Identification of genes differentially expressed in TLS-CHOP carrying myxoid liposarcomas. Int J Cancer 83:30–33Google Scholar
  143. Toretsky JA, Neckers L, Wexler LH (1995) Detection of (11;22)(q24;q12) translocation-bearing cells in peripheral blood progenitor cells of patients with Ewing’s sarcoma family of tumors. J Natl Cancer Inst 87:385–386PubMedGoogle Scholar
  144. Toretsky JA, Kalebic T, Blakesley V, LeRoith D, Helman LJ (1997) The insulin-like growth factor-I receptor is required for EWS/FLI-l transformation of fibroblasts. J Biol Chem 272:30822–30827PubMedGoogle Scholar
  145. Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y (2000) Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120:91–98PubMedGoogle Scholar
  146. Turc-Carel C, Aurias A, Mugneret F et al. (1988) Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32:229–238PubMedGoogle Scholar
  147. Wai DH, Knezevich SR, Lucas T, Jansen B, Kay RJ, Sorensen PH (2000) The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19:906–915PubMedGoogle Scholar
  148. Watson DK, Robinson L, Hodge DR, Kola I, Papas TS, Seth A (1997) FLI1 and EWS-FLI1 function as ternary complex factors and ELK1 and SAP1a function as ternary and quaternary complex factors on the Egrl promoter serum response elements. Oncogene 14:213–221PubMedGoogle Scholar
  149. West DC, Grier HE, Swallow MM, Demetri GD, Granowetter L, Sklar J (1997) Detection of circulating tumor cells in patients with Ewing’s sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol 15:583–588PubMedGoogle Scholar
  150. Whang-Peng J, Triche TJ, Knutsen T, Miser J, Douglass ECGoogle Scholar
  151. Israel MA (1984) Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 311:584–585PubMedGoogle Scholar
  152. Whang-Peng J, Freter CE, Knutsen T, Nanfro JJ, Gazdar A (1987) Translocation t(11;22) in esthesioneuroblastoma. Cancer Genet Cytogenet 29:155–157PubMedGoogle Scholar
  153. Zhang L, Lemarchandel V, Romeo PH, Ben David Y, Greer P, Bernstein A (1993) The Fli 1 proto-oncogene, involved in erythroleukemia and Ewing’s sarcoma, encodes a transcriptional activator with DNA-binding specificities distinct from other Ets family members. Oncogene 8:1621–1630PubMedGoogle Scholar
  154. Zoubek A, Dockhorn Dworniczak B, Delattre O et al. (1996) Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 14:1245–1251PubMedGoogle Scholar
  155. Zoubek A, Kovar H, Kronberger M et al. (1996) Mobilization of tumour cells during biopsy in an infant with Ewing sarcoma. Eur J Pediatr 155:373–376PubMedGoogle Scholar
  156. Zoubek A, Ladenstein R, Windhager R et al. (1998) Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer 79:56–60PubMedGoogle Scholar
  157. Zucman J, Delattre O, Desmaze C et al. (1992) Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 5:271–277PubMedGoogle Scholar
  158. Zucman J, Melot T, Desmaze C et al. (1993) Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J 12:4481–4487PubMedCentralPubMedGoogle Scholar
  159. Zucman Rossi J, Batzer MA, Stoneking M, Delattre O, Thomas G (1997) Interethnic polymorphism of EWS intron 6: genome plasticity mediated by Alu retroposition and recombination. Hum Genet 99:357–363Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Karl-Ludwig Schäfer
  • Raihanatou Diallo
  • Barbara Dockhorn-Dworniczak
  • Christopher Poremba

There are no affiliations available

Personalised recommendations