Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 56 Accesses

Zusammenfassung

Sarkome, d. h. maligne mesenchymale Tumoren, der Knochen und des Weichgewebes stellen eine große Gruppe heterogener Tumorentitäten dar. Aus molekularpathologischer Sicht sind zahlreiche dieser Tumoren durch charakteristische, chromosomale Umlagerungen gekennzeichnet (Tabelle 13.1), deren Bestimmung sowohl diagnostisch als auch für das Verständnis der Tumorgenese von hohem Wert ist. In diesem Kapitel werden schwerpunktmäßig die Sarkome behandelt, die durch ebensolche chromosomalen Umlagerungen (Translokationen) charakterisiert sind. Die einzelnen Tumorentitäten werden unter Berücksichtigung der Inzidenz und Epidemiologie, ätiologie, Pathogenese, Pathologie einschließlich molekularer Diagnostik sowie der Tumorbiologie vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams V, Hany MA, Schmid M, Hassam S, Briner J, Niggli FK (1996) Detection of t(11;22)(q24;q12) translocation breakpoint in paraffin-embedded tissue of the Ewing’s sarcoma family by nested reverse transcription-polymerase chain reaction. Diagn Mol Pathol 5:107–113

    PubMed  CAS  Google Scholar 

  • Ahrens S, Hoffmann C, Jabar S et al. (1999) Evaluation of prognostic factors in a tumor volume-adapted treatment strategy for localized Ewing sarcoma of bone: the CESS 86 experience. Cooperative Ewing Sarcoma Study. Med Pediatr Oncol 32:186–195

    CAS  Google Scholar 

  • Alava E de, Kawai A, Healey JH et al. (1998) EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma [published erratum appears in J Clin Oncol 1998 16:2895]. J Clin Oncol 16:1248–1255

    PubMed  Google Scholar 

  • Alvegard TA, Berg NO, for the Scandinavian Sarcoma Group (1989) Histopathology peer review of high-grade soft tissue sarcoma: the Scandinavian Sarcoma Group experience. J Clin Oncol 7:1845–1851

    PubMed  CAS  Google Scholar 

  • Ambros IM, Ambros PF, Strehl S et al. (1991) MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67:1886–1893

    PubMed  CAS  Google Scholar 

  • Anderson J, Renshaw J, McManus A et al. (1997) Amplification of the t(2;13) and t(1;13) translocations of alveolar rhabdomyosarcoma in small formalin-fixed biopsies using a modified reverse transcriptase polymerase chain reaction. Am J Pathol 150:477–482

    PubMed Central  PubMed  CAS  Google Scholar 

  • Anderson J, Gordon A, Pritchard-Jones K, Shipley J (1999) Genes, chromosomes, and rhabdomyosarcoma. Genes Chromosomes Cancer 26:275–285

    PubMed  CAS  Google Scholar 

  • Antonescu CR, Kawai A, Leung DH et al. (2000) Strong association of SYT-SSX fusion type and morphologie epithelial differentiation in synovial sarcoma. Diagn Mol Pathol9:1–8

    PubMed  CAS  Google Scholar 

  • Argani P, Perez Ordonez B et al. (1998) Olfactory neuroblastoma is not related to the Ewing family of tumors: absence of EWS/FLI1 gene fusion and MIC2 expression. Am J Surg Pathol 22:391–398

    PubMed  CAS  Google Scholar 

  • Argani P, Zakowski MF, Klimstra DS, Rosai J, Ladanyi M (1998) Detection of the SYT-SSX chimeric RNA of synovial sarcoma in paraffin-embedded tissue and its application in problematic cases. Mod Pathol 11:65–71

    PubMed  CAS  Google Scholar 

  • Armengoi G, Tarkkanen M, Virolainen M et al. (1997) Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br J Cancer 75:1403–1409

    Google Scholar 

  • Arvand A, Bastians H, Welford SM, Thompson AD, Ruderman JV, Denny CT (1998) EWS/FLI1 up regulates mE2-C, a cyclin-selective ubiquitin conjugating enzyme involved in cyclin B destruction. Oncogene 17:2039–2045

    PubMed  CAS  Google Scholar 

  • Askin FB, Rosai J, Sibley RK, Dehner LP, McAlister WH (1979) Malignant small cell tumor of the thoracopulmonary cregion in childhood: a distinctive clinieopathologie entity of uncertain histogenesis. Cancer 4:2438–2451

    Google Scholar 

  • Azumi N, Ben Ezra J, Battifora H (1988) Immunophenotypic diagnosis of leiomyosarcomas and rhabdomyosarcomas with monoclonal antibodies to muscle-specific actin and desmin in formalin-fixed tissue. Mod Pathol 1:469–474

    PubMed  CAS  Google Scholar 

  • Bailly RA, Bosselut R, Zucman J (1994) DNA-binding and btranscriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 14:3230–3241

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baker KS, Anderson JR, Link MP et al. (2000) Benefit of intensified therapy for patients with local or regional embryonal rhabdomyosarcoma: results from the Intergroup Rhabdomyosarcoma Study IV, J Clin Oncol 18:2427–2434

    PubMed  CAS  Google Scholar 

  • Barr FG (1997) Molecular genetics and pathogenesis of rhabdomyosarcoma. J Pediatr Hematol Oncol 19:483-491

    Google Scholar 

  • Barr FG, Chatten J, D’Cruz CM et al. (1995) Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA 273:553–557

    PubMed  CAS  Google Scholar 

  • Barr FG, Xiong QB, Kelly K (1995) A consensus polymerase chain reaction-oligonucleotide hybridization approach for the detection of chromosomal translocations in pediatric bone and soft tissue sarcomas. Am J Clin Pathol 104:627–633

    PubMed  CAS  Google Scholar 

  • Bennicelli JL, Advani S, Schafer BW, Barr FG (1999) PAX3 and PAX7 exhibit conserved cis-acting transcription repression domains and utilize a common gain of function mechanism in alveolar rhabdomyosarcoma. Oncogene 18:4348–4356

    PubMed  CAS  Google Scholar 

  • Brett D, Whitehouse S, Antonson P, Shipley J, Cooper C, Goodwin G (1997) The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Hum Mol Genet 6:1559–1564

    PubMed  CAS  Google Scholar 

  • Brinkschmidt C, Poremba C, Schafer KL et al. (1998) Evidence of genetic alterations in chromosome 11 in embryonal and alveolar rhabdomyosarcoma. Verh Dtsch Ges Pathol 82:210–214

    PubMed  CAS  Google Scholar 

  • Casola S, Pedone PV; Cavazzana AO et al. (1997) Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma.Oncogene 14:1503–1510

    PubMed  CAS  Google Scholar 

  • Chibon F, Mairal A, Freneaux P et al. (2000) The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 60:6339–6345

    PubMed  CAS  Google Scholar 

  • Choong PF, Mandahl N, Mertens F et al. (1996) 19p+ marker chromosome correlates with relapse in malignant fibrous histiocytoma. Genes Chromosomes Cancer 16:88–93

    PubMed  CAS  Google Scholar 

  • Clark J, Rocques PJ, Crew AJ et al. (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18) (p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508

    PubMed  CAS  Google Scholar 

  • Crew AJ, Clark J, Fisher C et al. (1995) Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 14:2333–2340

    PubMed Central  PubMed  CAS  Google Scholar 

  • Crist W, Gehan EA, Ragab AH et al. (1995) The Third Intergroup Rhabdomyosarcoma Study. J Clin Oncol 13:610–630

    PubMed  CAS  Google Scholar 

  • Dardick I, O’Brien PK, Jeans MT, Massiah KA (1982) Synovial sarcoma arising in an anatomieal bursa. Virchows Arch A 397:93–101

    CAS  Google Scholar 

  • Davis RJ, Barr FG (1997) Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 94:8047–8051

    PubMed Central  PubMed  CAS  Google Scholar 

  • Del Tos AP, Dal Cin P (1997) The role of cytogenetics in the classification of soft tissue tumours. Virchows Arch 431:83–94

    Google Scholar 

  • Del Tos AP, Wadden C, Calonje E et al. (1995) Immunohistochemical demonstration of glycoprotein p30/32mic2 (CD99) in synovial sarcoma. A potential cause for diagnostic confusion. Appl Immunohistochem 3:168–173

    Google Scholar 

  • Delattre O, Zucman J, Plougastel B et al. (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359:162–165

    PubMed  CAS  Google Scholar 

  • Delattre O, Zucman J, Melot T et al. (1994) The Ewing family of tumors-a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331:294–299

    PubMed  CAS  Google Scholar 

  • Desmaze C, Zucman J, Delattre O, Melot T, Thomas G, Aurias A (1994) Interphase molecular cytogenetics of Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) with flanking and overlapping cosmid probes. Cancer Genet Cytogenet 74:13–18

    PubMed  CAS  Google Scholar 

  • Desmaze C, Brizard F, Turc-Carel C et al. (1997) Multiple chromosomal mechanisms generate an EWS/FLI1 or an EWS/ERG fusion gene in Ewing tumors. Cancer Genet Cytogenet 97:12–19

    PubMed  CAS  Google Scholar 

  • Dickersin GR, Rosenberg AE (1991) The ultrastructure of small-cell osteosarcoma, with a review of the light microscopy and differential diagnosis. Hum Pathol 22:267–275

    PubMed  CAS  Google Scholar 

  • Dockhorn Dworniczak B, Schafer KL, Dantcheva R et al. (1994) Diagnostic value of the molecular genetic detection of the t( 11;22) translocation in Ewing’s tumours. Virchows Arch 425:107–112

    Google Scholar 

  • Dockhorn Dworniczak B, Wolff J, Poremba C et al. (1996) A new germline TP53 gene mutation in a family with LiFraumeni syndrome. Eur J Cancer 32A:1359–1365

    Google Scholar 

  • Dockhorn Dworniczak B, Schafer KL, Blasius S et al. (1997) Assessment of molecular genetic detection of chromosome translocations in the differential diagnosis of pediatric sarcomas. Klin Pädiatr 209:156–164

    PubMed  CAS  Google Scholar 

  • Donaldson LW, Petersen JM, Graves BJ, McIntosh LP (1996) Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif. EMBO J15:125–134

    PubMed Central  PubMed  CAS  Google Scholar 

  • Douglass EC, Rowe ST, Valentine M, Parham D, Meyer WH, Thompson EI (1990) A second nonrandom translocation, der(16)t(1;16)(q21;q13), in Ewing sarcoma and peripheral neuroectodermal tumor. Cytogenet Cell Genet 53:87–90

    PubMed  CAS  Google Scholar 

  • Downing JR, Head DR, Parharn DM et al. (1993) Detection of the (11;22)(q24;q12) translocation of Ewing’s sarcoma and peripheral neuroectodermal tumor by reverse transcription polymerase chain reaction.Am J Pathol 143:1294–1300

    PubMed Central  PubMed  CAS  Google Scholar 

  • Downing JR, Khandekar A, Shurtleff SA et al. (1995) Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing’s sarcoma. Am J Pathol 146:626–634

    PubMed Central  PubMed  CAS  Google Scholar 

  • Edwards RH, Chatten J, Xiong QB, Barr FG (1997) Detection of gene fusions in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction assay of archival samples. Diagn Mol Pathol 6:91–97

    PubMed  CAS  Google Scholar 

  • el-Sabrout R, Gruber SA (1997) Etiology and pathogenesis of posttransplant tumors: new insights into viral oncogenesis. Ann Transplant 2:67–69

    PubMed  CAS  Google Scholar 

  • Fagnou C, Michon J, Peter M et al. (1998) Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing’s tumor. Societe Francaise d’Oncologie Pediatrique. J Clin Oncol 16: 1707–1711

    PubMed  CAS  Google Scholar 

  • Fellinger EJ, Garin Chesa P, Triche TJ, Huvos AG, Rettig WJ (1991) Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol 139:317–325

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fisher C (1990) The value of electronmicroscopy and immunohistochemistry in the diagnosis of soft tissue sarcomas: a study of 200 cases. Histopathology 16:441–454

    PubMed  CAS  Google Scholar 

  • Fletcher JA (1994) Cytogenetics and experimental models of sarcomas. Curr Opin Oncol 6:367–371

    PubMed  CAS  Google Scholar 

  • Gaynor JJ, Tan CC, Casper ES et al. (1992) Refinement of clinicopathologic staging for localized soft tissue sarcoma of the extremity: a study of 423 adults. J Clin Oncol 10:1317–1329

    PubMed  CAS  Google Scholar 

  • Ginsberg JP, Alava E de, Ladanyi M et al. (1999) EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol 17:1809–1814

    PubMed  CAS  Google Scholar 

  • Goedert JJ (2000) The epidemiology of acquired immunodeficiency syndrome malignancies. Semin Oncol 27:390–401

    PubMed  CAS  Google Scholar 

  • Gordon T, McManus A, Anderson J et al. (2001) Cytogenetic abnormalities in 42 rhabdomyosarcoma: a United Kingdom Cancer Cytogenetics Group Study. Med Pediatr Oncol36:259–267

    PubMed  CAS  Google Scholar 

  • Granowetter L (1992) Ewing’s sarcoma and extracranial primitive neuroectodermal tumors. Curr Opin Oncol 4:696–703

    PubMed  CAS  Google Scholar 

  • Guccion JG, Enzinger FM (1979) Malignant Schwannoma associated with von Recklinghausen’s neurofibromatosis. Virchows Arch A 383:43–57

    CAS  Google Scholar 

  • Gusterson B, Shipley J, Crew J (1994) Application of molecular genetics and cytogenetics to breast cancer and soft tissue sarcomas. Ann Oncol [Suppl 4] 5:17–23

    PubMed  Google Scholar 

  • Hachitanda Y, Toyoshima S, Akazawa K, Tsuneyoshi M (1998) N-myc gene amplification in rhabdomyosarcoma detected by fluorescence in situ hybridization: its correlation with histologix features. Mod Pathol 11:1222–1227

    PubMed  CAS  Google Scholar 

  • Hahm KB, Cho K, Lee C et al. (1999) Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet 23:222–227

    PubMed  CAS  Google Scholar 

  • Hartley AL, Blair V, Harris M et al. (1993) Multiple primary tumours in a population-based series of patients with histopathologically peer-reviewed sarcomas. Br J Cancer 68:1243–1246

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hasegawa SL, Davison JM, Rutten A, Fletcher JA, Fletcher CD (1998) Primary cutaneous Ewing’s sarcoma: immunophenotypic and molecular cytogenetic evaluation of five cases. Am J Surg Pathol 22:310–318

    PubMed  CAS  Google Scholar 

  • Hattinger CM, Rumpier S, Ambros IM et al. (1996) Demonstration of the translocation der(16)t(1;16)(q12;q11.2) in interphase nuclei of Ewing tumors. Genes Chromosomes Cancer 17:141–150

    PubMed  CAS  Google Scholar 

  • Hattinger CM, Rumpier S, Strehl S et al. (1999) Prognostic impact of deletions at 1 p36 and numerical aberrations in Ewing tumors. Genes Chromosomes Cancer 24:243–254

    PubMed  CAS  Google Scholar 

  • Hisaoka M, Tsuji S, Morimitsu Y (1998) Detection of TLS/FUS-CHOP fusion transcripts in myxoid and round cell liposarcomas by nested reverse transcription-polymerase chain reaction using archival paraffin-embedded tissues. Diagn Mol Pathol 7:96–101

    PubMed  CAS  Google Scholar 

  • Ida K, Kobayashi S, Taki T et al. (1995) EWS-FLI-1 and EWSERG chimeric mRNAs in Ewing’s sarcoma and primitive neuroectodermal tumor. Int J Cancer 63:500–504

    PubMed  CAS  Google Scholar 

  • Im YH, Kim HT, Lee C et al. (2000) EWS-FLI1, EWS-ERG, and EWS-ETVI oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res 60:1536–1540

    PubMed  CAS  Google Scholar 

  • Jeon IS, Davis JN, Braun BS et al. (1995) A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10:1229–1234

    PubMed  CAS  Google Scholar 

  • Johnson ES (1994) Poultry oncogenic retroviruses and humans. Cancer Detect Prev 18:9–30

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Yoshida K, Handa M et al. (1996) Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 15:115–121

    PubMed  CAS  Google Scholar 

  • Kawai A, Woodruff J, Healey JH, Brennan MF, Antonescu CR, Ladanyi M (1998) SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 338:153–160

    PubMed  CAS  Google Scholar 

  • Kelly KM, Womer RB, Sorensen PH, Xiong QB, Barr FG (1997) Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol 15:1831–1836

    PubMed  CAS  Google Scholar 

  • Knezevieh SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE, Sorensen PH (1998) ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastie nephroma and congenital fibrosarcoma. Cancer Res 58:5046–5048

    Google Scholar 

  • Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18:184–187

    PubMed  CAS  Google Scholar 

  • Kovar H, Auinger A, Jug G et al. (1993) Narrow spectrum of infrequent p53 mutations and absence of MDM 2 amplification in Ewing tumours. Oncogene 8:2683–2690

    PubMed  CAS  Google Scholar 

  • Kovar H, Aryee DN, Jug G et al. (1996) EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ 7:429–437

    PubMed  CAS  Google Scholar 

  • Kovar H, Jug G, Aryee DN et al. (1997) Among genes involved in the RB dependent cell cyde regulatory cascade, the p 16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene 15:2225–2232

    PubMed  CAS  Google Scholar 

  • Kransdorf MJ (1995) Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location. Am J Roentgenol 164:129–134

    CAS  Google Scholar 

  • Kumar S, Pack S, Kumar D et al. (1999) Detection of EWSFLI-1 fusion in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor by fluorescence in situ hybridization using formalin-fixed paraffin-embedded tissue. Hum Pathol 30:324–330

    PubMed  CAS  Google Scholar 

  • Kumar S, Perlman E, Pack S et al. (1999) Absence of EWS/FLI1 fusion in olfactory neuroblastomas indicates these tumors do not belong to the Ewing’s sarcoma family. Hum Pathol 30:1356–1360

    PubMed  CAS  Google Scholar 

  • Ladanyi M, Bridge JA (2000) Contribution of molecular genetic data to the dassification of sarcomas. Hum Pathol 31:532–538

    PubMed  CAS  Google Scholar 

  • Ladanyi M, Lewis R, Jhanwar SC, Gerald W, Huvos AG, Healey JH (1995) MDM2 and CDK4 gene amplification in Ewing’s sarcoma. J Pathol 175:211–217

    PubMed  CAS  Google Scholar 

  • Lee CS, Southey MC, Slater H, Auldist AW, Chow CW, Venter DJ (1995) Primary cutaneous Ewing’s sarcoma/peripheral primitive neuroectodermal tumors in childhood. A molecular, cytogenetic, and immunohistochemical study. Diagn Mol Pathol 4:174–181

    PubMed  CAS  Google Scholar 

  • Legius E, Dierick H, Wu R et al. (1994) TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer 10:250–255

    PubMed  CAS  Google Scholar 

  • Leuschner I, Newton WA, Schmidt D et al. (1993) Spindle cell variants of embryonal rhabdomyosarcoma in the paratesticular region. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol 17:221–230

    PubMed  CAS  Google Scholar 

  • Lin PP, Brody RI, Hamelin AC, Bradner JE, Healey JH, Ladanyi M (1999) Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing’s sarcoma. Cancer Res 59:1428–1432

    PubMed  CAS  Google Scholar 

  • Lu YJ, Birdsall S, Summersgill B et al. (1999) Dual colour fluorescence in situ hybridization to paraffin-embedded samples to deduce the presence of the der(X)t(X;18) (p11.2;q11.2) and involvement of either the SSX1 or SSX2 gene: a diagnostic and prognostic aid for synovial sarcoma. J Pathol 187:490–496

    PubMed  CAS  Google Scholar 

  • Maillet MW, Robinson RA, Burgart LJ et al. (1992) Genomic alterations in sarcomas: a histologic correlative study with use of oncogene panels. Mod Pathol 5:410–414

    PubMed  CAS  Google Scholar 

  • Malkin D, Li FP, Strong LC et al. (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    PubMed  CAS  Google Scholar 

  • Mark RJ, Poen J, Tran LM, Fu YS, Selch MT, Parker RG (1994) Postirradiation sarcomas. A single institution study and review of the literature. Cancer 73:2653–2662

    PubMed  CAS  Google Scholar 

  • May WA, Lessnick SL, Braun BS et al. (1993) The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 13:7393–7398

    PubMed Central  PubMed  CAS  Google Scholar 

  • May WA, Arvand A, Thompson AD, Braun BS, Wright M, Denny CT (1997) EWS/FLI1-induced manic fringe renders NIH 3T3 cells tumorigenic. Nat Genet 17:495–497

    PubMed  CAS  Google Scholar 

  • McManus AP, Gusterson BA, Pinkerton CR, Shipley JM (1995) Diagnosis of Ewing’s sarcoma and related tumours by detection of chromosome 22q12 translocations using fluorescence in situ hybridization on tumour touch imprints. J Pathol 176:137–142

    PubMed  CAS  Google Scholar 

  • Mertens F, Rydholm A, Bauer HF et al. (1995) Cytogenetic findings in malignant peripheral nerve sheath tumors. Int J Cancer 61:793–798

    PubMed  CAS  Google Scholar 

  • Mertens F, Dal Cin P, De Wever I et al. (2000) Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP study group. J Pathol 190:31–38

    PubMed  CAS  Google Scholar 

  • Mezzelani A, Tornielli S, Minoletti F, Pierotti MA, Sozzi G, Pilotti S (1999) Esthesioneuroblastoma is not a member of the primitive peripheral neuroectodermal tumour Ewing’s group. Br J Cancer 81:586–591

    PubMed Central  PubMed  CAS  Google Scholar 

  • Minniti CP, Tsokos M, Newton WA, Helman LJ (1994) Specific expression of insulin-like growth factor-II in rhabdomyosarcoma tumor cells. Am J Clin Pathol 101:198–203

    PubMed  CAS  Google Scholar 

  • Monforte Munoz H, Lopez Terrada D, Affendie H, Rowland JM, Triche TJ (1999) Documentation of EWS gene rearrangements by fluorescence in-situ hybridization (FISH) in frozen sections of Ewing’s sarcoma-peripheral primitive neuroectodermal tumor. Am J Surg Pathol 23:309–315

    Google Scholar 

  • Murray EM, Werner D, Greeff EA, Taylor DA (1999) Postradiation sarcomas: 20 cases and a literature review. Int J Radiat Oncol Biol Phys 45:951–961

    PubMed  CAS  Google Scholar 

  • Nagao K, Ito H, Yoshida H et al. (1997) Chromosomal rearrangement t(11;22) in extraskeletal Ewing’s sarcoma and primitive neuroectodermal tumour analysed by fluorescence in situ hybridization using paraffin-embedded tissue. J Pathol 181:62–66

    PubMed  CAS  Google Scholar 

  • Nakajima H, Sim FH, Bond JR, Unni KK (1997) Small cell osteosarcoma of bone. Review of 72 cases. Cancer 79:2095–2106

    PubMed  CAS  Google Scholar 

  • Newton WA, Gehan EA, Webber BL et al. (1995) Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new dassification-an Intergroup Rhabdomyosarcoma Study. Cancer 76:1073–1085

    PubMed  Google Scholar 

  • Noguera R, Navarro S, Triche TJ (1990) Translocation (11;22) in small cell osteosarcoma. Cancer Genet Cytogenet 45:121–124

    PubMed  CAS  Google Scholar 

  • Ohno T, Rao VN, Reddy ES (1993) EWS/Fli-1 chimeric protein is a transcriptional activator. Cancer Res 53:5859–5863

    PubMed  CAS  Google Scholar 

  • Ohno T, Ouchida M, Lee L, Gatalica Z, Rao VN, Reddy ES (1994) The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene 9:3087–3097

    PubMed  CAS  Google Scholar 

  • Ordonez NG, Mahfouz SM, Mackay B (1990) Synovial sarcoma: an immunohistochemical and ultrastructural study. Hum Pathol 21:733–749

    PubMed  CAS  Google Scholar 

  • Ouchida M, Ohno T, Fujimura Y, Rao VN, Reddy ES (1995) Loss of tumorigenicity of Ewing’s sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene 11:1049–1054

    PubMed  CAS  Google Scholar 

  • Panagopoulos I, Hoglund M, Mertens F, Mandahl N, Mitelman F, Aman P (1996) Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene 12:489–494

    PubMed  CAS  Google Scholar 

  • Paulussen M, Ahrens S, Braun Munzinger G et al. (1999) EICESS 92 (European Intergroup Cooperative Ewing’s Sarcoma Study)-preliminary results. Klin Pädiatr 211:276–283

    PubMed  CAS  Google Scholar 

  • Pawel BR, Hamoudi AB, Asmar L et al. (1997) Undifferentiated sarcomas of children: pathology and clinical behavior-an Intergroup Rhabdomyosarcoma Study. Med Pediatr Oncol 29:170–180

    PubMed  CAS  Google Scholar 

  • Penn I (1994) Depressed immunity and the development of cancer. Cancer Detect Prev 18:241–252

    PubMed  CAS  Google Scholar 

  • Peso L del, Gonzalez VM, Hernandez R, Barr FG, Nunez G (1999) Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 18:7328–7333

    PubMed  Google Scholar 

  • Peter M, Magdelenat H, Michon J et al. (1995) Sensitive detection of occult Ewing’s cells by the reverse transcriptase-polymerase chain reaction. Br J Cancer 72:96–100

    PubMed Central  PubMed  CAS  Google Scholar 

  • Peter M, Couturier J, Pacquement H et al. (1997) A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 14: 1159–1164

    PubMed  CAS  Google Scholar 

  • Petermann R, Mossier BM, Aryee DN, Khazak V, Golemis EA, Kovar H (1998) Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase H. Oncogene 17:603–610

    PubMed  CAS  Google Scholar 

  • Pfleiderer C, Zoubek A, Gruber B et al. (1995) Detection of tumour cells in peripheral blood and bone marrow from Ewing tumour patients by RT-PCR. Int J Cancer 64:135–139

    PubMed  CAS  Google Scholar 

  • Poremba C, Bankfalvi A, Dockhorn Dworniczak B (1996) Tumor suppressor gene p53. Theoretical principles and their significance for pathology. Pathologe 17:181–188

    PubMed  CAS  Google Scholar 

  • Prasad DD, Rao VN, Reddy ES (1992) Structure and expression of human Fli-1 gene. Cancer Res 52:5833–5837

    PubMed  CAS  Google Scholar 

  • Price CH, Jeffree GM (1977) Incidence of bone sarcoma in SW England 1946-74, in relation to age, sex, tumour site and histology. Br J Cancer 36:511–522

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qualman SJ, Coffin CM, Newton WA et al. (1998) Intergroup Rhabdomyosarcoma Study: update for pathologists. Pediatr Dev Pathol 1:550–561

    PubMed  CAS  Google Scholar 

  • Reeves BR, Smith S, Fisher C et al. (1989) Characterization of the translocation between chromosomes X and 18 in human synovial sarcomas. Oncogene 4:373–378

    PubMed  CAS  Google Scholar 

  • Rodary C, Gehan EA, Flamant F et al. (1991) Prognostic factors in 951 nonmetastatic rhabdomyosarcoma in children: a report from the International Rhabdomyosarcoma Workshop. Med Pediatr Oncol 19:89–95

    PubMed  CAS  Google Scholar 

  • Ruymann FB, Grovas AC (2000) Progress in the diagnosis and treatment of rhabdomyosarcoma and related soft tissue sarcomas. Cancer Invest 18:223–241

    PubMed  CAS  Google Scholar 

  • Santos NR dos, Bruijn DR de, Balemans M et al. (1997) Nuclear localization of SYT, SSX and the synovial sarcomaassociated SYT-SSX fusion proteins. Hum Mol Genet 6:1549–1558

    PubMed  Google Scholar 

  • Schmidt D, Herrmann C, Jürgens H, Harms D (1991) Malignant peripheral neuroectodermal tumor and its necessary distinction from Ewing’s sarcoma. A report from the Kiel Pediatric Tumor Registry. Cancer 68:2251–2259

    PubMed  CAS  Google Scholar 

  • Scrable H, Cavenee W, Ghavimi F, Lovell M, Morgan K, Sapienza C (1989) A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci USA 86:7480–7484

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shipley J, Fisher C (1998) Chromosome translocations in sarcomas and the analysis of paraffin-embedded material. J Pathol 184:1–3

    PubMed  CAS  Google Scholar 

  • Shipley JM, Clark J, Crew AJ et al. (1994) The t(X;18) (p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453

    PubMed  CAS  Google Scholar 

  • Shmookler BM, Enzinger FM, Brannon RB (1982) Orofacial synovial sarcoma: a clinicopathologic study of 11 new cases and review of the literature. Cancer 50:269–276

    PubMed  CAS  Google Scholar 

  • Silvestris N (1999) AIDS-related Kaposi’s sarcoma: prineipal pathogenic mechanisms. J Exp Clin Cancer Res 18:311–315

    PubMed  CAS  Google Scholar 

  • Smith TA, Machen SK, Fisher C, Goldblum JR (1999) Usefulness of cytokeratin subsets for distinguishing monophasic synovial sarcoma from malignant peripheral nerve sheath tumor. Am J Clin Pathol 112:641–648

    PubMed  CAS  Google Scholar 

  • Sorensen SA, Mulvihill JJ, Nielsen A (1986) Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med 314: 1010–1015

    PubMed  CAS  Google Scholar 

  • Sorensen PH, Liu X.F., Delattre O et al. (1993) Reverse transcriptase PCR amplification of EWS/FLI-1 fusion transcripts as a diagnostic test for peripheral primitive neuroectodermal tumors of childhood. Diagn Mol Pathol 2:147–157

    PubMed  CAS  Google Scholar 

  • Sorensen PH, Wu JK, Berean KW et al. (1996) Olfactory neuroblastoma is a peripheral primitive neuroectodermal tumor related to Ewing sarcoma. Proc Natl Acad Sci USA 93:1038–1043

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spillane AJ, A’Hern R, Judson I.R., Fisher C, Thomas JM (2000) Synovial sarcoma: a clinicopathologic, staging, and prognostic assessment. J Clin Oncol 18:3794–3803

    PubMed  CAS  Google Scholar 

  • Stark B, Mor C, Jeison M et al. (1997) Additional chromosome 1q aberrations and der(16)t(1;16), correlation to the phenotypic expression and clinical behavior of the Ewing family of tumors. J Neurooncol 31:3–8

    PubMed  CAS  Google Scholar 

  • Stiller CA, Parkin DM (1996) Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull 52:682–703

    PubMed  CAS  Google Scholar 

  • Suster S, Fisher C, Moran CA (1998) Expression of bcl-2 oncoprotein in benign and malignant spindle cell tumors of soft tissue, skin, serosal-surfaces, and gastrointestinal tract. Am J Surg Pathol 22:863–872

    PubMed  CAS  Google Scholar 

  • Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y (1997) EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest 99:239–247

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tarkkanen M, Aaltonen LA, Bohling T et al. (1996) No evidence of microsatellite instability in bone tumours. Br J Cancer 74:453–455

    PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor C, Patel K, Jones T, Kiely F, De Stavola BL, Sheer D (1993) Diagnosis of Ewing’s sarcoma and peripheral neuroectodermal tumour based on the detection of t(11;22) using fluorescence in situ hybridisation. Br J Cancer 67:128–133

    PubMed Central  PubMed  CAS  Google Scholar 

  • Terrier P, Llombart Bosch A, Contesso G (1996) Small round blue cell tumors in bone: prognostic factors correlated to Ewing’s sarcoma and neuroectodermal tumors. Semin Diagn Pathol 13:250–257

    PubMed  CAS  Google Scholar 

  • Thelin Jarnum S, Lassen C, Panagopoulos I, Mandahl N, Aman P (1999) Identification of genes differentially expressed in TLS-CHOP carrying myxoid liposarcomas. Int J Cancer 83:30–33

    Google Scholar 

  • Toretsky JA, Neckers L, Wexler LH (1995) Detection of (11;22)(q24;q12) translocation-bearing cells in peripheral blood progenitor cells of patients with Ewing’s sarcoma family of tumors. J Natl Cancer Inst 87:385–386

    PubMed  CAS  Google Scholar 

  • Toretsky JA, Kalebic T, Blakesley V, LeRoith D, Helman LJ (1997) The insulin-like growth factor-I receptor is required for EWS/FLI-l transformation of fibroblasts. J Biol Chem 272:30822–30827

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y (2000) Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120:91–98

    PubMed  CAS  Google Scholar 

  • Turc-Carel C, Aurias A, Mugneret F et al. (1988) Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32:229–238

    PubMed  CAS  Google Scholar 

  • Wai DH, Knezevich SR, Lucas T, Jansen B, Kay RJ, Sorensen PH (2000) The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19:906–915

    PubMed  CAS  Google Scholar 

  • Watson DK, Robinson L, Hodge DR, Kola I, Papas TS, Seth A (1997) FLI1 and EWS-FLI1 function as ternary complex factors and ELK1 and SAP1a function as ternary and quaternary complex factors on the Egrl promoter serum response elements. Oncogene 14:213–221

    PubMed  CAS  Google Scholar 

  • West DC, Grier HE, Swallow MM, Demetri GD, Granowetter L, Sklar J (1997) Detection of circulating tumor cells in patients with Ewing’s sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol 15:583–588

    PubMed  CAS  Google Scholar 

  • Whang-Peng J, Triche TJ, Knutsen T, Miser J, Douglass EC

    Google Scholar 

  • Israel MA (1984) Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 311:584–585

    PubMed  Google Scholar 

  • Whang-Peng J, Freter CE, Knutsen T, Nanfro JJ, Gazdar A (1987) Translocation t(11;22) in esthesioneuroblastoma. Cancer Genet Cytogenet 29:155–157

    PubMed  CAS  Google Scholar 

  • Zhang L, Lemarchandel V, Romeo PH, Ben David Y, Greer P, Bernstein A (1993) The Fli 1 proto-oncogene, involved in erythroleukemia and Ewing’s sarcoma, encodes a transcriptional activator with DNA-binding specificities distinct from other Ets family members. Oncogene 8:1621–1630

    PubMed  CAS  Google Scholar 

  • Zoubek A, Dockhorn Dworniczak B, Delattre O et al. (1996) Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 14:1245–1251

    PubMed  CAS  Google Scholar 

  • Zoubek A, Kovar H, Kronberger M et al. (1996) Mobilization of tumour cells during biopsy in an infant with Ewing sarcoma. Eur J Pediatr 155:373–376

    PubMed  CAS  Google Scholar 

  • Zoubek A, Ladenstein R, Windhager R et al. (1998) Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer 79:56–60

    PubMed  CAS  Google Scholar 

  • Zucman J, Delattre O, Desmaze C et al. (1992) Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 5:271–277

    PubMed  CAS  Google Scholar 

  • Zucman J, Melot T, Desmaze C et al. (1993) Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J 12:4481–4487

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zucman Rossi J, Batzer MA, Stoneking M, Delattre O, Thomas G (1997) Interethnic polymorphism of EWS intron 6: genome plasticity mediated by Alu retroposition and recombination. Hum Genet 99:357–363

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schäfer, KL., Diallo, R., Dockhorn-Dworniczak, B., Poremba, C. (2002). Molekulare Grundlagen organspezifischer Tumoren: Knochen- und Weichteilsarkome. In: Ganten, D., Ruckpaul, K., Hahn, S.A., Schmiegel, W. (eds) Molekularmedizinische Grundlagen von nicht-hereditären Tumorerkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56297-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56297-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62572-5

  • Online ISBN: 978-3-642-56297-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics