Skip to main content

Abstract

ADEOS = Advanced Earth Observing Satellite. Japanese (NASDA) satellite mission.591) Objective: Global observation of land, ocean and atmospheric processes (ocean color and sea surface temperature). In addition, communication experiments are planned for the study (feasibility) of interorbit links, called IOCS (Inter-Orbital Communication Subsystem). Launch with H-II launch vehicle from Tanegashima Space Center, Japan, on August 17, 1996592)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NASDA handout at the CEOS WGD-10 Meeting in Annapolis MD, April 16–19, 1991

    Google Scholar 

  2. In Japan the ADEOS satellite is also referred to as ‘MIDORI’, meaning ‘green’.

    Google Scholar 

  3. “ADEOS,” NASDA brochure, 1993

    Google Scholar 

  4. “Special issue on ADEOS,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No 3, May 1999, Part II of two parts

    Google Scholar 

  5. ADEOS Reference Handbook, 1996, online available at http://www.eorc.nasda.go.jp/ADEOS/Products/Handbook.html

  6. F. M. Naderi, M. H. Freilich, D. G. Long, “Spaceborne Radar Measurement of Wind Velocity Over the Ocean -An Overview of the NSCAT Scatterometer System,” Proceedings of IEEE, Vol. 79, No. 6, June 1991, pp. 850–866

    Google Scholar 

  7. P. Y. Deschamps, F. M. Bréon, et al., “The POLDER mission: Instrument characteristics and; scientific objectives,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, 1994, pp. 598–615

    Google Scholar 

  8. P. Y. Deschamps, M. Herman, A. Podaire, M. Leroy, M Laporte, P. Vermande, “A Spatial Instrument for the Observation of Polarization and Directionality of Earth Reflectances: POLDER,” IGARSS ′90 Conference Proceedings, Washington, D. C.

    Google Scholar 

  9. H. Kobayashi, T. Ogawa, et al., “IMG, precursor of the high-resolution FTIR on the satellite,” SPIE Proceedings, Vol. 3501, Optical Remote Sensing of the Atmosphere and Clouds, Beijing, Sept. 15–17, 1999, pp. 23–33

    Google Scholar 

  10. “Upper Atmosphere Monitoring with ADEOS — ILAS and RIS,” EA/NIES brochure provided by Y. Sasano of NIES

    Google Scholar 

  11. “Ozone Layer Observation by Satellite Sensors,” Proceedings of the International Workshop on Global Environment and Earth Observing Satellite Sensors, December 8–9, 1993, Tokyo, Japan

    Google Scholar 

  12. Y. Sasano, et al., “ILAS and RIS for ADEOS,” SPIE, Vol. 1490, 1991, pp. 233–242

    Google Scholar 

  13. “Retroreflector-In-Space for ADEOS: Earth-Space-Earth Laser Long-Path Absorption Measurements of Atmospheric Trace Species,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 488–490

    Google Scholar 

  14. A. Minato, N. Sugimoto, S. Sasano, “Optical Design of Cube-Corner Retroreflectors Having Curved Mirror Surfaces,” Applied Optics, Vol. 31, 1992, pp. 6015–6020

    Google Scholar 

  15. “Monitoring the Earth Environment from Space,” NASDA Bulletin

    Google Scholar 

  16. M. Nakajima, Y. Ito, H. Maejima, Y. Kojima, “The Development of AMSR and GLI for ADEOS-II,” presented at the 45th Congress of the International Astronautical Federation, October 9–14, 1994, Jerusalem, Israel

    Google Scholar 

  17. T. Y. Nakajima, et al., “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Applied Optics, Vol. 37, No. 15, May 20, 1998, 3149–3163

    Google Scholar 

  18. M. W. Spencer, C. Wu, D. G. Long, “Tradeoffs in the Design of a Spaceborne Scanning Pencil Beam Scatterometer: Application to Sea Winds,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No 1, Jan. 1997, pp. 115–120

    Google Scholar 

  19. B. D. Boller, et al., “The Development of the SeaWinds Scatterometer Electronics Subsystem (SES),” Proceedings of IGARSS′96, Vol. 1, pp. 269–272

    Google Scholar 

  20. Information provided by Y. Sasano of NIES (National Institute for Environmental Studies)

    Google Scholar 

  21. Y. Sasano, et al., “ILAS-II Instrument and Data Processing System for Stratospheric Ozone Layer Monitoring”, Proceedings of SPIE, Vol.4150, pp.106–114, 2001

    Google Scholar 

  22. http://www.ilas2.nies.go.jp/

  23. http://alos.nasda.go.jp/index-e.html

  24. http://www.eorc.nasda.go.jp/ALOS/set_about.html

  25. T. Hamazaki, “Overview of the Advanced Land Observing Satellite (ALOS): Its Mission Requirements, Sensors, and a Satellite System,” presented to ISPRS Joint Workshop “Sensors and Mapping From Space 1999,” International Society for Photogrammetry and Remote Sensing (ISPRS), Sept. 27–30, 1999

    Google Scholar 

  26. Y. Osawa, H. Wakabayashi, K. Toda, T. Hamazaki, “Advanced Land Observing Satellite (ALOS): Mission Requirements, Payloads and Satellite System,” paper of NASDA provided by K. Misawa

    Google Scholar 

  27. Information provided by the NASDA ALOS team (Naoto Matsuura) during the review process of my ALOS draft

    Google Scholar 

  28. “Soviets Launch Largest Earth Resources Satellite on Modified Salyut Platform,” Aviation Week & Space Technology/April 8, 1991, pp. 21–22

    Google Scholar 

  29. “Almaz to add Dimension to Earth Study,” Space News, March 18–24, 1991, p. 1

    Google Scholar 

  30. “ALMAS — Sowjetischer Erdsatellit mit Synthetic Aperture Radar zur Erderkundung,” IKF Berlin, 1990, aus der Reihe: Informationen aus der internationalen Zusammenarbeit.

    Google Scholar 

  31. “Almaz to add Dimension to Earth Study,” Space News, March 18–24, 1991, p. 1

    Google Scholar 

  32. “Sowjetisches Weltraumauge sammelt Ströme digitaler Daten,” VDI Nachrichten, 21. Dez., 1990, Seite 20

    Google Scholar 

  33. “Almaz Falls from Orbit,” Space News, Oct 26-Nov. 1, 1992, p. 1

    Google Scholar 

  34. I. Iqbal, A. V. Qureshi, A. S. Ahmed, “SUPARCO BADR Satellite,” International Workshop on Low-Cost Space Missions, Islamabad, Pakistan, Nov. 24 to Dec. 4, 1999

    Google Scholar 

  35. http://www.sil.com/PROJECTS.htm

  36. http://www.ssd.rl.ac.uk/ssd/ccdtg/BADR-B.htm

  37. Information provided by George Joseph of ISRO

    Google Scholar 

  38. “Bhaskara — Satellite for Earth Observations,” ISRO publication, June 1979

    Google Scholar 

  39. Aryabhata (476–550) and Bhaskara (1114–1185) were two ancient mathematicians and astronomers of India. Aryabhata is the earliest Hindu mathematician whose work and history are available to modern scholars. He was one of the first known to use algebra. Bhaskara (“The Learned”) was the leading mathematician of the 12th century, who wrote the first work with full and systematic use of the decimal number system.

    Google Scholar 

  40. In the Sanskrit language, SAMIR means “breeze”

    Google Scholar 

  41. Zhu Yilin, “Ziyuan-1, China’s First Earth Resources Satellite (CBERS),” Earth Space Science Review, July-September 1994, Vol. 3, No. 3, pp. 16–19

    Google Scholar 

  42. “The China-Brazil Earth Resources Satellite Program,” paper provided by G. Santana of INPE

    Google Scholar 

  43. “CBERS Spacecraft: Conception and Design,” paper presented by E. A. Parada Tude of INPE and by C. Quinnan of CAST at the 1st Brazilian Symposium of Aerospace Technology, Sao Jose dos Campos, Aug. 27–31, 1990

    Google Scholar 

  44. G. K. Rayalu, et al., “Multispectral and Multitemporal Optical Sensors of CBERS,” INPE internal paper

    Google Scholar 

  45. http://www.inpe.br/programas/cbers/english/index.html

  46. C. de Oliveira Lino, M. G. Rodrigues Lima, G. L. Hubscher, “CBERS — An International Space Cooperation Program,” Acta Astronautica, Vol. 47, No 2–9, 2000, pp. 559–564

    Google Scholar 

  47. D. Lin, S. Cui, “CCD Camera for CBERS,” Proceedings of the Asian Conference on Remote Sensing, Hongkong, Nov. 1999, pp. 285–288

    Google Scholar 

  48. W. Huaiyi, M. Wenpo, “The IRMSS for CBERS,” Proceedings of the Asian Conference on Remote Sensing, Hongkong, Nov. 1999, pp. 902–905

    Google Scholar 

  49. Information provided by Luiz A. Bueno of INPE

    Google Scholar 

  50. R. A. McDonald, “CORONA: Success for Space Reconnaissance, A Look into the Cold War, and a Revolution for Intelligence,” PE&RS, Vol. 61, No. 6, 1995, pp. 689–719

    Google Scholar 

  51. R. A. McDonald, “Opening the Cold War Sky to the Public: Declassifying Satellite Reconnaissance Imagery,” PE&RS, Vol. 61, No. 4, 1995, pp. 385–390

    Google Scholar 

  52. J. Leachtenauer, K. Daniel, T. Vogl, “Digitizing Satellite Imagery: Quality, and Cost Considerations,” PE&RS January 1998, pp. 29–34

    Google Scholar 

  53. J. T. Richelson, “Scientists in Black,” Scientific American, Feb. 1998, pp. 38–45

    Google Scholar 

  54. “The ESA Earth Observation Programme and its Role in Global Remote Sensing,” P. Goldsmith, Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment,” Vol. I, ERIM, Ann Arbor, MI, pp. 125–137.

    Google Scholar 

  55. Programme Proposal for the first Polar Orbit Earth-Observation Mission using the Polar Platform, Part 1, ESA paper, 31–08–89

    Google Scholar 

  56. Objectives and Strategy for the Earth-Observation Programme of the European Space Agency, ESA, Oct. 88

    Google Scholar 

  57. Polar Platform Concept Evaluation, ESA paper, Sept. 25, 1989

    Google Scholar 

  58. Programme Proposal for the first ESA Polar Platform, ESA/PB-EO (89) 32, Sept. 1, 1989

    Google Scholar 

  59. Programme Proposal for the Development and Exploitation of the First Polar Orbit Earth-Observation Mission (POEM-1) using the Polar Platform, ESA/POEM 1, Issue 1, Oct. 28, 1991, Part 1, Issue 1, Oct. 30, 1991, Part 2

    Google Scholar 

  60. ENVISAT Special Issue, ESA Bulletin No 106, June 2001

    Google Scholar 

  61. “ENVISAT — Europe’s Earth Observation Mission for the new Millennium,” ESA Earth Observation Quarterly, No. 60, 1998

    Google Scholar 

  62. http://envisat.esa.int/

  63. J. Louet, “The Envisat Mission and System,” ESA Bulletin No 106, June 2001, pp. 11–25

    Google Scholar 

  64. P. A. Dubock, F. Spoto, J. Simpson, D. Spencer, E. Schutte, H. Sonntag, “The Envisat Satellite and its Integration,” ESA Bulletin, No 106, June 2001, pp. 26–45

    Google Scholar 

  65. “ENVISAT: Mission and System Summary,” ESA brochure, March 1998

    Google Scholar 

  66. P. Soerensen, A. Rudolph, L. O’Rourke, T. Beck, X. Marx, et al., The Flight Operations Segment, ESA Bulletin, No 106, June 2001, pp. 88–95

    Google Scholar 

  67. F. Martin Crespo, J.-P. Guignard, C. Garrido, M. Irle, “The Payload Data Segment,” ESA Bulletin, No 106, June 2001, pp. 96–102

    Google Scholar 

  68. J.-L. Bézy, S. Delwart, M. Rast, “MERIS — A New Generation of Ocean-Color Sensor onboard ENVISAT,” ESA Bulletin, No 103, August 2000, pp. 48–56

    Google Scholar 

  69. “MERIS Medium Resolution Imaging Spectrometer,” ESA brochure

    Google Scholar 

  70. J.-L. Bézy, G. Gourmelon, R. Bessudo, G. Baudin, H. Sonntag, S. Weiss, “The ENVISAT Medium Resolution Imaging Spectrometer (MERIS), Proceedings of IGARSS′99, Vol. 2, pp. 1432–1434, Hamburg, June 28–July 2, 1999

    Google Scholar 

  71. M. Morel, J. L. Bézy, F. Montagner, A. Morel, J. Fischer, “Envisat’s Medium-Resolution Imaging Spectrometer,” ESA Bulletin, No. 76, November 1993, pp. 40–46

    Google Scholar 

  72. G. Levrini, E. Attema, “The Commissioning Phase and the Calibration/Validation Activities,” ESA Bulletin, No 106, June 2001, pp. 109–117

    Google Scholar 

  73. G. Levrini, E. Attema, “The Envisat Calibration and Validation Approach,” ESA Earth Observation Quarterly, No 67, Oct. 2000, pp. 9–16

    Google Scholar 

  74. M. Endemann, P. Garé, D. J. Smith, R. Geßner, “The ENVISAT Michelson Interferometer for Passive Atmospheric Sounding (MIRAS),” Proceedings of IGARSS′99, Vol. 2, pp. 1435–1437, Hamburg, Germany, June 28–July 2, 1999

    Google Scholar 

  75. M. Endemann, H. Fischer, “Envisat’s High-Resolution Limb Sounder: MIPAS,” ESA Bulletin 76, November 1993, pp. 47–52

    Google Scholar 

  76. W. Posselt, “Michelson Interferometer for Passive Atmospheric Sounding,” Proceedings of the Twenty-fourth International Symposium on Remote Sensing of the Environment, May 27–31, 1991, Rio de Janeiro, Volume II, pp. 737–748, ERIM, Ann Arbor MI.

    Google Scholar 

  77. http://envisat.estec.esa.nl/

  78. M. Endermann, Ph. Gare, D.J. Smith, K. Hoerning, B. Fladt, R. Geissler, “MIPAS: Design Overview and Current Development Status,” Proceedings of SPIE, Vol. 2956, pp. 124–135, Sept. 24–26, 1996,

    Google Scholar 

  79. M. Zink, C. Buck, J. L. Suchail, R. Torres, et al., “The Radar Imaging Instrument and Its Applications: ASAR,” ESA Bulletin No 106, June 2001, pp. 46–55

    Google Scholar 

  80. Y. L. Desnos, C. Buck, et al., “ASAR — Envisat’s Advanced Synthetic Aperture Radar,” ESA Bulletin, No. 102, May 2000, pp. 91–100

    Google Scholar 

  81. J. L. Suchail, C. Buck, J. Guijarro, R. Torres, “The ENVISAT Advanced Synthetic Aperture Radar Instrument,” Proceedings of IGARSS′99, Vol. 2, pp. 1441–1443, Hamburg, Germany, June 28–July 2, 1999

    Google Scholar 

  82. “ASAR Advanced Synthetic Aperture Radar,” ESA brochure

    Google Scholar 

  83. S. Karnevi, E. Dean, D. J. Q. Carter, S. S. Hartley, “Envisat’s Advanced Synthetic Aperture Radar: ASAR,” ESA Bulletin, No. 76, November 1993, pp. 30–35

    Google Scholar 

  84. E. Attema, Y-L. Desnos, G. Duchossois, “Synthetic Aperture Radar in Europe: ERS, Envisat, and Beyond,” JHU/APL Technical Digest, Vol. 21, No. 1, 2000, pp. 155–161

    Google Scholar 

  85. J. Benveniste, M. Roca, G. Levrini, P. Vincent, S. Baker, O. Zanife, C. Zelli, O. Bombaci, “The Radar Altimetry Mission: RA-2, MWR, DORIS, and LRR,” ESA Bulletin, No 106, June 2001, pp. 67–76

    Google Scholar 

  86. C. Zelli, et al., “RA-2 Radar Altimeter: Instrument EM Model Performance Results,” IGARSS′97, Vol. 1, pp. 18–20

    Google Scholar 

  87. G. Angino, et al., “High Spatial Resolution Radar Altimetry for Global Earth Topography Mapping,” IGARSS′97, Vol. 1, pp. 15–17

    Google Scholar 

  88. A. Resti, “Envisat’s Radar Altimeter: RA-2,” ESA Bulletin, No. 76, November 1993, pp. 58–60

    Google Scholar 

  89. A. Resti, et al., “The Envisat Radar Altimeter System (RA-2),” ESA Bulletin No. 98, June 1999, pp. 94–101

    Google Scholar 

  90. H. Nett, J. Frerick, T. Paulsen, G. Levrini, “The Atmospheric Instruments and their Applications: GOMOS, MIPAS and SCIAMACHY,” ESA Bulletin, No 106, June 2001, pp. 77–87

    Google Scholar 

  91. T. Paulsen, A. F. Popescu, G. Ratier, G. Uguen, Ch. Lemercier, “The Global Ozone Monitoring by Occultation of Stars (GOMOS), Proceedings of IGARSS′99, Vol. 2, pp. 1438–1440, Hamburg, Germany, June 28–July 2, 1999

    Google Scholar 

  92. G. Ratier, G. Levrini, et al., “GOMOS: Envisat’s Contribution to Measuring Long-Term Trends in Ozone and Other Trace Gases, ESA Bulletin, Nr. 97, March 1999, pp. 20–27

    Google Scholar 

  93. A. Popescu, P. Ingmann, “Envisat’s Global Ozone Monitoring by Occultations of Stars Instrument: GOMOS,” ESA Bulletin, No. 76, November 1993, pp. 36–39

    Google Scholar 

  94. GOMOS handout from Atmospheres Panel Meeting’ in Washington DC, Feb. 26–27, 1991

    Google Scholar 

  95. “GOMOS — Global Ozone Monitoring by Occultation of Stars,” ESA brochure

    Google Scholar 

  96. J. L. Bertaux, E. Kyrölä, T. Wehr, “Stellar Occultation Technique for Atmospheric Ozone Monitoring: GOMOS on Envisat,” ESA Earth Observation Quarterly, No 67, Oct. 2000, pp. 17–20

    Google Scholar 

  97. J. Langen, “Envisat’s Contribution to Atmospheric Chemistry Studies,” Proceedings of IGARSS′99, Hamburg, Vol. III, June 28– July 2, 1999, pp. 1497–1499

    Google Scholar 

  98. J. Bertaux, “Vertical Profiles of Ozone from Envisat Space Platform with GOMOS Instrument,” Proceedings of IGARSS′99, Hamburg, Vol. III, June 28– July 2, 1999, pp. 1616–1618

    Google Scholar 

  99. J. Guijarro, A. Auriol, et al., “MWR and DORIS — Supporting Envisat’s Radar Altimetry Mission,” ESA Bulletin, No 104, Nov. 2000, pp. 41–46

    Google Scholar 

  100. J.-P. Huot, H. Tait, M. Rast, S. Delwart, J.-L. Bézy, G. Levrini, “The Optical Imaging Instruments and their Applications: AATSR and MERIS,” ESA Bulletin, No 106, June 2001, pp. 56–66

    Google Scholar 

  101. D. Lllewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, H. Tait, “AATSR: Global-Change and Surface Temperature Measurements from Envisat,” ESA Bulletin, 105, Feb. 2001, pp. 11–21

    Google Scholar 

  102. A. P. H. Goede, H, Schrijver, “SCIAMACHY: An Atmospheric Chemistry Instrument on ENVISAT,” Proceedings of IGARSS′99, Hamburg, Vol. III, June 28– July 2, 1999, pp. 1609–1611

    Google Scholar 

  103. G. Asrar, R. Greenstone (editors), “MTPE/EOS Reference Handbook 1995,” NASA/GSFC

    Google Scholar 

  104. “Earth Observing System,” Reference Handbook 1990, and 1991, NASA/GSFC

    Google Scholar 

  105. “Optical Remote Sensing of the Atmosphere,” 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 23–58

    Google Scholar 

  106. G. Asrar, D. J. Dokken, “EOS Reference Handbook,” March 1993, NASA

    Google Scholar 

  107. The EOS/AM-1 satellite was renamed by NASA to “Terra” in Feb. 1999

    Google Scholar 

  108. Special issue on EOS/AM-1 Platform, Instruments and Scientific Data, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No 4, July 1998

    Google Scholar 

  109. http://asterweb.jpl.nasa.gov/

  110. ASTER, EOS Reference Handbook, 1999, pp. 102–105

    Google Scholar 

  111. NASA/LaRC CERES brochure, NP-1999–04–069-GSFC

    Google Scholar 

  112. http://www-misr.jpl.nasa.gov/

  113. MODIS brochure of NASA/GSFC provided by M. D. King

    Google Scholar 

  114. http://terra.nasa.gov/About/MODIS/about_modis.html

  115. http://modis.gsfc.nasa.gov/

  116. Information provided by C. Schueler and J. Thunen of Hughes SBRC (now Raytheon SBRS)

    Google Scholar 

  117. MOPITT brochure of CSA/NASA

    Google Scholar 

  118. http://www.science.sp-agency.ca/J1-MOPITT(Eng).htm

  119. http://www.atmosp.physics.utoronto.ca/MOPITT/home.html

  120. Note: NASA renamed the EOS/PM-1 satellite to Aqua on Oct. 18, 1999

    Google Scholar 

  121. http://www-airs.jpl.nasa.gov/

  122. http://www.dss.inpe.br/programas/hsb/ingl/index.html

  123. Information provided by Janio Kono of INPE, Sao José dos Campos, Brazil

    Google Scholar 

  124. http://wwwghcc.msfc.nasa.gov/AMSR/

  125. Note: The EOS/Chem-1 mission was renamed in 2000 to Aura.

    Google Scholar 

  126. http://aura.gsfc.nasa.gov/hirdls/

  127. http://aura.gsfc.nasa.gov/mls/

  128. P. F. Levelt, B. van den Oord, E. Hilsenrath, G. W. Leppelmeier, et al., “Science Objectives of EOS-Aura’s Ozone Monitoring Instrument (OMI),” Proceedings of the Quadrennial Ozone Symposium, Sapporo, Japan, 2000, pp. 127–128

    Google Scholar 

  129. E. Laan, J. de Vries, B. Kruizinga, H. Visser, et al., “Ozone Monitoring with the OMI Instrument,” Proceedings of 45th Annual Meeting of SPIE, San Diego, CA, July 30 to Aug. 4, 2000, Paper No 4132–41, pp. 334–343

    Google Scholar 

  130. E. Laan, J. de Vries, P. Levelt, P. Stammes, H. Saari, J. Lundell, A. Maelkki, et al., “Ozone Monitoring in the Next Millennium with the OMI Instrument,” Proc. IAF Congress, Oct. 2–6, 2000, Rio de Janeiro, IAF-99-B.2.09

    Google Scholar 

  131. R. Beer, T. A. Glavich, D. M. Rider, “Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite,” Applied Optics, Vol. 40, No 15, May 20, 2001, pp. 2356–2367

    Google Scholar 

  132. Note: As of January 1998 MTPE was renamed by NASA to “Earth Science Enterprise” (ESE)

    Google Scholar 

  133. M. D. King, R. Greenstone (editors), “1999 EOS Reference Handbook, NASA publication

    Google Scholar 

  134. MTPE/EOS Reference Handbook, 1995, NASA, G. Asrar and R. Greenstone (editors)

    Google Scholar 

  135. Earth Observation from Space, Report of ‘Committee on Earth Studies,’ ‘Space Studies Board,’ ‘Commission on Physical Sciences, Mathematics and Applications,’ ‘National Research Council,’ National Academy Press, Washington, D. C., 1995

    Google Scholar 

  136. ESA Bulletin No. 65 Feb. 1991

    Google Scholar 

  137. W. Markwitz, “Das ERS-1 Bodensegment, Empfang, Verarbeitung und Archivierung von SAR Daten,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 111–115

    Google Scholar 

  138. D. Gottschalk, “ERS-1 Mission and System Overview,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 100–101

    Google Scholar 

  139. M.F. Buchroithner, J. Raggan, D. Strobl “Geokodierung und geometrische Qualitätskontrolle,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 116–112

    Google Scholar 

  140. E. P. W. Attema, “The Active Microwave Instrument On-Board the ERS-1 Satellite,” Proc. IEEE, Vol. 79, No.6, June 1991, pp. 791–799

    Google Scholar 

  141. ERS-1 User Handbook, ESA SP-1148, May 1992, pp. 6–7

    Google Scholar 

  142. G. Schreier, K. Maeda, B. Guindon, “Three Spaceborne SAR Sensors: ERS-1, JERS-1, and RADARSAT- Competition or Synergism?,” Geo Informationssysteme, Heft 2/1991, Wichmann Verlag, Karlsruhe, pp. 20–27

    Google Scholar 

  143. R. Winter, D. Kosmann “Anwendungen von SAR-Daten des ERS-1 zur Landnutzung,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 128–132

    Google Scholar 

  144. W. Kühbauch, “Anwendung der Radarfernerkundung in der Landwirtschaft,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 122–127

    Google Scholar 

  145. F. M. Danson, N. A. Higgins, N. M. Trodd, “Measuring Land-Surface Directional Reflectance with the Along-Track Scanning Radiometer,” PE&RS, Vol 65, No 12, Dec. 1999, pp. 1411–1417

    Google Scholar 

  146. Note: The on-board PRARE instrument of the ERS-1 payload could not achieve operational status after launch. The instrument worked nominally for five days after launch (five contacts with the command station showed nominal telemetry). A thorough failure analysis came to the conclusion that the most likely cause of the PRARE failure is RAM damage due to radiation (destructive RAM latch-up).

    Google Scholar 

  147. ‘ESA Signs Long-awaited Imagery Sales Deal,’ Space News, Feb. 10.–16, 1992, p. 4

    Google Scholar 

  148. C. R. Francis, G. Graf, et al., “The ERS-2 Spacecraft and its Payload,” ESA Bulletin, No. 83, Aug. 1995, pp. 13–31

    Google Scholar 

  149. G. Duchossois, P. Martin, “ERS-1 and ERS-2 Tandem Operations,” ESA Bulletin, No. 83, August 1995, pp. 54–60

    Google Scholar 

  150. “Case Study 16: SAR Interferometry,” pp. 107–115, in ‘Further Achievements of the ERS Missions,’ ESA SP-1228, Dec. 1998, ISBN: 92–9092–508–6

    Google Scholar 

  151. N. Stricker, A. Hahne, et al., “ATSR-2: The Evolution in its Design from ERS-1 to ERS-2,” No. 83, August 1995, pp. 32–37

    Google Scholar 

  152. ESA 1998: GOME Special, Earth Observation Quarterly No. 58, March 1998

    Google Scholar 

  153. C. Zehner, G. Pittella, “Preparing atmospheric applications for future ESA Earth-observation missions in the frame of the data user program”, ESA Earth Observation Quarterly No. 61, Feb. 1999, pp. 1–6

    Google Scholar 

  154. C.J. Readings, The Interim GOME Science Report,’ Feb. 1990,

    Google Scholar 

  155. ‘The Global Ozone Monitoring Experiment (GOME) and ERS-2,’ Earth Observation Quarterly, ESA periodical No. 32 Dec. 1990

    Google Scholar 

  156. A. Hahne, et al., “GOME: A New Instrument for ERS-2,” ESA Bulletin, No. 73, February 1993, pp. 22–29

    Google Scholar 

  157. GOME Global Ozone Monitoring Experiment, Interim Science Report, ESA SP-1151, September 1993

    Google Scholar 

  158. Information provided by Lihua Zhang of CAST, Beijing, China

    Google Scholar 

  159. B. E. Schutz, “Spaceborne Laser Altimetry: 2001 and Beyond,” published in: H. P. Plag (ed.), 1998, Book of Extended Abstracts, Wegener-98, Norwegian Mapping Authority, Honefas, Norway

    Google Scholar 

  160. http://icesat.gsfc.nasa.gov/

  161. http://www.csr.utexas.edu/glas/

  162. “GLAS Geoscience Laser Altimeter System,” ESE Reference Handbook, 1999, NASA/GSFC, pp. 113–114

    Google Scholar 

  163. B. E. Schutz, “Laser Altimetry and Lidar From ICESat/GLAS,” IGARSS 2001, Sydney, Australia, July 9–13, 2001

    Google Scholar 

  164. Illustration provided by Michael D. King of NASA/GSFC

    Google Scholar 

  165. Note: The availability of Landsat imagery created a lot of interest in the science community. The Hyderabad ground station started receiving Landsat data on a regular basis in 1978. The Landsat program with its design and potentials was certainly a great model and yardstick for the IRS program.

    Google Scholar 

  166. G. Joseph, B. L. Deekshatulu, “Evolution of Remote Sensing in India,” Space in Pursuit of New Horizon, National Academy of Sciences publication, (editor: R. K. Verma and others), Allahabad, 1992, pp. 331–354

    Google Scholar 

  167. K. Kasturirangan, G. Joseph, et al., “IRS Mission,” Current Science, Vol. 61, No. 3 and 4, Aug. 25, 1991, pp. 136–151

    Google Scholar 

  168. P. S. Goel, “Spacecraft Technology Development in India,” Space Forum, Vol. 5, No 1–3, 2000, pp. 5–38

    Google Scholar 

  169. “Indian Remote Sensing Satellite and Associated Data Products,” A.K.S. Gopalan, Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment, Vol. I, p. 71, ERIM, Ann Arbor, MI, 1990

    Google Scholar 

  170. IRS NewsLetter, ISRO, Vol. 2 No. 1, March 1991

    Google Scholar 

  171. G. Joseph, IRS-1A Camera — Its Evolution and Realization,” brochure of NNRMS (National Natural Resources Management System), Bangalore, India

    Google Scholar 

  172. Note: At the time of project initiation, CCD arrays with maturity of production were limited to 2048 elements. Hence the swath of LISS-I was limited to about 150 km. Since LISS-II has a better resolution by a factor of two compared to the LISS-I camera, two LISS-II cameras were needed to produce a swath similar to that of LISS-I.

    Google Scholar 

  173. “India Expands Access to Imagery,” Space News Aug. 26 — Sept. 8, 1991, p. 22

    Google Scholar 

  174. “India Calls IRS-1B Launch a Success,” Space News, September 9–15, 1991, p. 12

    Google Scholar 

  175. IRS-1EMEOSS Utilization Plan, ISRO, July 1991

    Google Scholar 

  176. Note: The satellite designations P1, P2, P3, etc. stand for the launches carried out by PSLV (Polar Satellite Launch Vehicle), the launch vehicle developed by ISRO

    Google Scholar 

  177. Document on Configuration of IRS-P2 and MOS and their Interfaces, ISAC, Bangalore, Nov. 1992

    Google Scholar 

  178. IRS-1C Executive Summary, IRS-1C/1D Project, May 1990, ISRO

    Google Scholar 

  179. “India’s IRS-1C Satellite to offer sharper Images,” Space News, May 25–31, 1992 p. 11

    Google Scholar 

  180. “India Readies Sharper IRS-1C for Molniya Launch,” Space News, January 9–15, 1995, p. 3

    Google Scholar 

  181. S. Kalyanaraman, “Technologies Developed for IRS Program,” Journal of Spacecraft Technology, Vol. 9, No 1, 1999, pp. 1–13

    Google Scholar 

  182. K. Kasturirangan, et al., “Indian remote sensing satellite (IRS) — 1C — The beginning of a new era,” Current Science, Vol. No. 7, April 10, 1996, pp. 495–500

    Google Scholar 

  183. “IRS-1C Data Users Handbook,” NRSA (India) document provided by Euromap (of GAF), September 1995

    Google Scholar 

  184. G. Joseph, et al., “Cameras for Indian remote sensing satellite IRS-IC,” Current Science, Vol. 70, No. 7, April 10, 1996, pp. 510–515

    Google Scholar 

  185. K. Jacobsen, “Geometric Potential of IRS-1C PAN-Camera,” Proceedings of ISPRS Symposium on Earth Observation Systems for Sustainable Development, Feb. 25–27, 1998, pp. 131–136, ISRO, Bangalore

    Google Scholar 

  186. A. S. Kirankumar, P. N. Babu, R. Bisht, “A Study of On-Orbit Behavior of InGaAs SWIR Channel Device of IRS-1C/1D LISS-III Camera,” Proceedings of International Symposium on Earth Observation System for Sustainable Development, Feb. 25–27, 1998, Bangalore, India, pp. 303–307

    Google Scholar 

  187. K. Thyagarajan, A. Neumann, G. Zimmermann, “The IPS-P3 Remote Sensing Mission,” Small Satellites for Earth Observation, International Symposium of IAA, Berlin, Nov. 4–8, 1996, Walter de Gruyter

    Google Scholar 

  188. G. Zimmermann, A. Neumann, “The Imaging Spectrometer Experiment MOS on IPR-P3 — Three Years of Experience,” Journal of Spacecraft Technology, Vol. 10, No 1, Jan. 2000, pp. 1–9

    Google Scholar 

  189. R. N. Tyagi, “IRS-P4 mission,” Current Science, Vol. 77, No 8, Oct. 25, 1999, pp. 1033–1037

    Google Scholar 

  190. M. Rao, V. Jayaraman, G. Joseph, “Earth Observation Programme of India — Catering to National Needs of Sustainable Development,” Proceedings of the International Symposium on Earth Observation System for Sustainable Development, Feb. 25–27, 1998, Bangalore, India, pp. 277–292

    Google Scholar 

  191. R. N. Tyagi, “Indian Remote Sensing Satellite (IRS)-P4 (OCEANSAT-1), NNRMS Bulletin 22, May 1998, pp. 5–12

    Google Scholar 

  192. ISRO brochure of IRS-P4 (OceanSat-1), provided by George Joseph

    Google Scholar 

  193. SAC Courier, Vol. 24, No 2, July 1999, the issue focuses on IRS-P4 (OceanSat-1), instruments and applications

    Google Scholar 

  194. A. S. Ganeshan, S. A. Rathnakara, et al., “Precise Position Determination of IRS-P4 Using GPS Measurements,” Journal of Spacecraft Technology, Vol. 10, No 1, Jan. 2000, pp. 16–24

    Google Scholar 

  195. M. S. Kumar, A. S. Kumar, “Ocean Color Monitor (OCM) of IRS-P4,” NNRMS Bulletin-22, May 1998, pp.13–19

    Google Scholar 

  196. P. S. Desai, H. Honne Gowda, K. Kasturirangan, “Ocean research in India: Perspective from space,” Current Science, Vol. 78 No. 3, Feb. 2000, pp, 268–278

    Google Scholar 

  197. P. S. Desai, H. Honne Gowda, K. Kasturirangan, “Ocean research in India: Perspective from space,” Current Science, Vol. 78 No. 3, Feb. 2000, pp, 268–278

    Google Scholar 

  198. S. S. Rana, “Multifrequency Scanning Microwave Radiometer of IRS-P4,” NNRMS Bulletin-22, May 1998, pp.20–23

    Google Scholar 

  199. Note: ISRO is the only Space Agency anywhere that did not provide any imagery electronically of its spacecraft or of its instruments (in spite of many requests).

    Google Scholar 

  200. The Japanese nickname for JERS-1 is Fuyo-1, the name of a Japanese flower.

    Google Scholar 

  201. Y. Nemoto, et al., “Japanese Earth Resources Satellite-1 Synthetic Aperture Radar,” Proceedings of the IEEE, Vol. 79, No. 6, June 1991, pp. 800–809

    Google Scholar 

  202. JERS-1 Data User’s Handbook, provided by NASDA/EOC

    Google Scholar 

  203. K. Maeda, M. Nakai, O. Ryuguji, “JERS-1/ERS-1 Verification Program and Future Verification Program,” Advanced Space Research, Vol. 12, No. 7, pp. 327–331, 1992

    Google Scholar 

  204. SK Yoo, S. Lee, et al., “The KITSAT-2 CCD Earth Imaging Experiment,” Proceedings of SPIE Conference on Small Satellite Technology and Applications IV, Vol. 2317, Rome, September 1994

    Google Scholar 

  205. KITSAT-3 brochure provided by Dongseok Shin of SaTReC, Taejon, Republic of Korea

    Google Scholar 

  206. B. J. Kim, H. Lee, S. D. Choi, “Three-Axis Reaction Wheel Attitude Control System for KITSAT-3 Microsatellite,” Pergamon, Space Technology, Vol. 16, No 5/6, pp. 291–296, 1996

    Google Scholar 

  207. J. Seon, K. I. Deon, S. H. Kim, et al., “Brief Reports on KAISTSAT-4 Mission Analysis,” Journal on Astronomy and Space Sciences, Vol. 17, No. 2, 2000, pp. 1–9

    Google Scholar 

  208. J. Seon, H. S. Kim, B. J. Kim, Y. S. Chang, K.-M. Park, et al., “Preliminary results from mission analysis on KAISTSAT-4,” SaTReC paper provided by Woo-Kyung Lee

    Google Scholar 

  209. H.-W. Lee, B. J. Kim, M.-J. Tahk, D.-J. Park, “Attitude Determination and Control of KAISTSAT-4 Satellite,” internal paper of SaTReC provided by Woo-Kyung Lee

    Google Scholar 

  210. http://www.kari.re.kr/

  211. Information provided by H. Paik and G. H. Choi of KARI

    Google Scholar 

  212. Y. M. Cho, S. S. Yong, et al, “Ocean Scanning Multispectral Imager (OSMI),” Proceedings Fifth International Conference on Remote Sensing for Marine and Coastal Environments, San Diego, CA, Oct. 5–7, 1998

    Google Scholar 

  213. Y. M. Cho, “Ocean Scanning Multispectral Imager (OSMI), Post-launch Radiometric Responsivity Analysis,” Proceedings of IEEE/IGARSS 2000, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  214. Note: Preference is given to a whiskbroom imager (the older imaging technology) because the optics for push-broom operation must always cover FOV (the total field of view) while the optics for whiskbroom operation deal with IFOV (instantaneous field of view) wnich is much smaller than FOV. Hence, there are less distortions at the swath edge.

    Google Scholar 

  215. Information provided by Young-Min Cho of KARI

    Google Scholar 

  216. Special Issue: 25th Anniversary of Landsat, PE&RS Vol. LXIII, No. 7, July 1997, pp. 829–905

    Google Scholar 

  217. E. J. Sheffner, “The Landsat Program: Recent History and Prospects,” PE&RS, Vol. 60, 1994, pp. 735–744

    Google Scholar 

  218. “Taschenbuch zur Fernerkundung,” F. Strathmann, Wichmann Verlag, 1990

    Google Scholar 

  219. Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, AIAA, 1985, Chapter 3

    Google Scholar 

  220. A. F. Goetz, J. B. Wellman, W. L. Barnes, “Optical Remote Sensing of the Earth,” Proceedings of the IEEE, Vol. 73, No. 6, June 1985, pp. 950–969

    Google Scholar 

  221. S. C. Freden, F. Gordon, “Landsat Satellites,” Chapter 12 of ‘Manual of Remote Sensing,’ 2nd edition, Vol I, published by the American Society of Photogrammetry, 1983, pp. 517–570

    Google Scholar 

  222. A. M. Mika, “Three Decades of Landsat Instruments,” PE&RS, July 1997, pp. 839–852

    Google Scholar 

  223. Note: the line array of six detectors was positioned in the along-track direction, thus providing an instantaneous parallel ground coverage of 336 m in one cross-track scan with the whiskbroom configuration. This wide along-track coverage permits sufficient integration time for all cells in each scan sweep.

    Google Scholar 

  224. “Landsat-4 Data Users Handbook,” USGS/NOAA, 1984

    Google Scholar 

  225. P. N. Slater, “Remote Sensing Optics and Optical Systems,” Addison-Wesley, Reading, MA, 1980

    Google Scholar 

  226. “Satellite Loss Raises Questions for Eosat’s Future,” Space News, October 11–17, 1993, p. 3

    Google Scholar 

  227. EOSAT Landsat Technical Notes, September 1992

    Google Scholar 

  228. K. Dolan, P. Sabelhaus, D. Williams, “Landsat-7 Extending 25 Years of Global Coverage,” Proceedings of Information for Sustainability, 27th International Symposium on Remote Sensing of Environment, Tromsoe, Norway, June 8–12, 1998, pp. 622–625

    Google Scholar 

  229. B. L. Markham, et al., “Radiometric Calibration of the Landsat-7 Enhanced Thematic Mapper Plus,” Proceedings of IGARSS ′94, Volume IV, pp. 2004–2006

    Google Scholar 

  230. K. Thome, B. Markham, J. Barker, P. Slater, S. Biggar, “Radiometric Calibration of Landsat,” PE&RS, July 1997, pp. 853–858

    Google Scholar 

  231. Note: The detector line arrays (16 for VNIR bands, 32 for PAN, and 8 detectors for TIR) of the whiskbroom scanner are oriented in the along-track direction. This arrangement provides a parallel coverage of 480 m along-track in one scan sweep (cross-track direction). The wide along-track coverage permits sufficient integration time for all cells in each scan sweep.

    Google Scholar 

  232. J. R. Irons, D. L. Williams, B. L. Markham, “Landsat-7 ETM+ On-Orbit Calibration and Data Quality Assessment,” Proceedings IGARSS ′95, Vol. II, pp. 1573–1575

    Google Scholar 

  233. W. C. Draeger, T. M. Holm, D. T. Lauer, R. J. Thompson, “The Availability of Landsat Data: Past, Present and Future,” PE&RS, July 1997, pp. 869–875

    Google Scholar 

  234. R. A. Williamson, “The Landsat Legacy: Remote Sensing Policy and the Development of Commercial Remote Sensing,” PE&RS, July 1997, pp. 877–885

    Google Scholar 

  235. The satellite missions are named in honor of Meriwether Lewis (1774–1809) and William Clark (1770–1838), who headed the first overland expedition of about 40 persons (1804–06) to the Pacific coast and back, starting in St. Louis, Missouri. The expedition was initiated by President Thomas Jefferson, who wanted a first survey (information in the form of maps and diaries) of the territory west of the Mississippi acquired by the Louisiana Purchase in 1803 from France.

    Google Scholar 

  236. Information provided by J. S. Pearlman and S. K. Manlief of TRW, Redondo Beach, CA

    Google Scholar 

  237. P. Parry, “The SSTI Lewis Better, Faster, Cheaper Guidance < Navigation, and Control Subsystem,” Proceedings of the 10th AIAA/USU Conference on Small Satellites, Sept. 16–19, 1996, Logan, UT

    Google Scholar 

  238. Note: The NICMOS3 array is being developed for the next-generation IR instruments for the Hubble Space Telescope.

    Google Scholar 

  239. J. Benton, “Pyramyd Coarse Sun Sensing for NASA SSTI Clark Safe-Hold Mode,” Proceedings of the 10th AIAA/USU Conference on Small Satellites, Sept. 16–19, 1996, Logan, UT

    Google Scholar 

  240. Information provided by J. Jacobi of CTA, McLean, VA and by R. J. Hayduk of NASA/HQ, Washington, DC

    Google Scholar 

  241. A. Lawler, “Faster, Cheaper, Better is Also Harder,” Science, Vol. 29, March 6, 1998

    Google Scholar 

  242. P. G. Weber, B. C. Brock, A. J. Garrett, et al., “Multispectral Thermal Imager Mission Overview,” Proceedings of SPIE, Imaging Spectroscopy V, Vol 3753, Denver, CO, July 19–21, 1999, pp. 340–346

    Google Scholar 

  243. http://nis-www.lanl.gov/nis-projects/mti/

  244. R. Rex Kay, S. C. Bender, T. D. Henson, D. A. Byrd, et al., “Multispectral Thermal Imager (MTI) Payload Overview,” Proceedings of SPIE, Imaging Spectroscopy V, Vol 3753, Denver, CO, July 19–21, 1999, pp. 347–358

    Google Scholar 

  245. T. Henson, S. Bender, W. Rappoport, et al., “Multispectral Thermal Imager Optical Optical Performance and Integration of the Flight Focal Plane Assembly,” SPIE Vol. 3753, Denver, CO, July 19–21, 1999, pp. 359–368

    Google Scholar 

  246. W. B. Clodius, et al., “MTI On-Orbit Calibration,” SPIE Vol. 3753, Denver, CO, July 19–21, 1999, pp. 380–391

    Google Scholar 

  247. F. Fárnik, H. Garcia, A. Kiplinger, “Solar Broad-band Hard X-Ray Spectrometer Onboard the MTI Satellite,” Proceedings of A Crossroads for European Solar & Heliospheric Physics Conference,’ Tenerife, March 23–27, 1998, pp. 305–308, ESA SP-417

    Google Scholar 

  248. H. A. Garcia, F. Fárnik, A. L. Kiplinger, “Hard x-ray spectroscopy for proton flare prediction,” Proceedings of the SPIE Conference on Missions to the Sun II, San Diego, CA, July 1998, Vol. 3442, pp. 210–216

    Google Scholar 

  249. http://www.asu.cas.cz/english/new/HXRS_descr.htm

  250. T. Wilson, C. Davis, “Naval EarthMap Observer (NEMO) Satellite,” Proceedings of SPIE, Vol. 3753, Denver, CO, July 19–21, 1999, pp. 2–11

    Google Scholar 

  251. http://nemo.nrl.navy.mil/public/index.html

  252. C. O. Davis, K. Carder, “Requirements Driven Design of an Imaging Spectrometer System for Characterization of the Coastal Environment,” Proceedings of SPIE, Vol. 3118, San Diego, CA, 1997

    Google Scholar 

  253. C. O. Davis, “The Hyperspectral Remote Sensing Technology (HRST) Program,” NRL White Paper, 1997

    Google Scholar 

  254. C. O. Davis, K. Carder, “Requirements Driven Design of an Imaging Spectrometer System for Characterization of the Coastal Environment,” Proceedings of SPIE, Vol. 3118, San Diego, CA, 1997

    Google Scholar 

  255. M. Corson, “Calibration of the NEMO sensor imaging payload,” SPIE Proceedings, Vol. 3437, 1998

    Google Scholar 

  256. A. Myers, “NEMO satellite sensor imaging payload,” SPIE Proceedings, Vol. 3437, 1998

    Google Scholar 

  257. J. Bowles, et al., “Hyperspectral Data Compression and Science Algorithms for the NEMO Satellite,” Proceedings of 1st EARSeL Workshop on Imaging Spectroscopy, University of Zürich, Switzerland, Oct. 6–8.1998, pp. 183–190

    Google Scholar 

  258. Verbal information provided by B. Kutuza of IRE (Russian Academy of Sciences), Moscow

    Google Scholar 

  259. OKEAN-O Earth Observation Spacecraft, a brochure of RKA and NKAU provided by B. Kutuza of IRE, Moscow

    Google Scholar 

  260. http://www.okean-o.dp.ua/en_satellite.html

  261. Information provided by B. Kutuza of IRE, Moscow, and translated by B. Zhukov of DLR, Oberpfaffenhofen

    Google Scholar 

  262. I. V. Bragin, V. P. Sgibnew, K. A. Pobedonostsev, A. V. Evtushenko, et. al., “Space-Based Remote Sensing Complexes,” Proceedings of the 29th European Microwave Conference, Munich, Sept. 1999, pp. 388–390

    Google Scholar 

  263. Information provided by V. I. Pustovoit, V. E. Pozhar, and V. N. Zhogun of STCUI-RAS

    Google Scholar 

  264. V. I. Pustovoit, V. E. Pozhar, “Acousto-optical spectrometers for Earth remote sensing,” Proceedings of SPIE 44th Annual Meeting, International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, July 18–23, 1999

    Google Scholar 

  265. “PRIRODA,” Ein Forschungsmodul der sowjetischen Orbitalstation MIR zur Fernerkundung der Erde, Wissenschaftliche Nutzlast Technische Beschreibung, Institut für Kosmosforschung (IKF), Berlin, 1990

    Google Scholar 

  266. “PRIRODA-Experimente,” Programm zur Beschaffung, Verarbeitung, Bewertung und Anwendung von Daten des Multisensorsystems PRIRODA der sowjetischen Orbitalstation MIR, 1992–94, DARA, Berlin, Mai 1991

    Google Scholar 

  267. “Complex for Remote Sensing of the Earth,” Science Program, DLR paper 1991

    Google Scholar 

  268. Orbital Station MIR, Complex of Remote Sensing of the Earth “PRIRODA,” Scientific Program, IRE brochure, Moscow, 1991

    Google Scholar 

  269. G. Zimmermann, “Mission PRIRODA,” German Proposals to Scientific Program, DARA Bulletin, Dec. 1991

    Google Scholar 

  270. I. V. Bragin, V. P. Sgibnew, et al., “Space-Based Remote Sensing Complexes,” Proceedings of the 29th European Microwave Conference, Munich, Germany, Oct. 5–7, 1999, Vol. 2, pp. 388–390

    Google Scholar 

  271. A. Neumann, “Spaceborne Imaging Spectrometers for Ocean Color Remote Sensing, MOS-Priroda and MOSIRS,” DLR/ISST paper presented at the IOC Ocean Color Workshop, Victoria, BC, September 21–22, 1995

    Google Scholar 

  272. M. L. Chanin, M. Desbois, A. Hauchecorne, “ALISSA a French Russian cooperation in the PRIRODA mission.” Paper of CNRS — Service d’Aeronomie

    Google Scholar 

  273. R. Furrer, H. Rubin, M. Schaale, A. V. Poberovsky, A. V. Mironenkov, Y. M. Timofeyev, “MIRIAM — A Space-borne Sun Occultation Experiment for Atmospheric Trace Gas Spectroscopy,” GeoJournal 32.1, January 1994, pp. 17–27

    Google Scholar 

  274. “MIRIAM 1995–1998 MIR-Infrared Atmospheric Measurements — Untersuchung der Atmosphäre aus der Raumstation MIR,” Institut für Weltraumwissenschaften an der Freien Universität Berlin, 1994

    Google Scholar 

  275. German User Requirements to PRIRODA Mission, Annex 1 of Protocol to MOMS-2 for the PRIRODA Mission, DLR paper of PRIRODA Workshop, May 1991

    Google Scholar 

  276. Protocol of the Meeting of Specialists of USSR and Germany on MOMS-2 for the PRIRODA Mission. DLR paper, May 1991

    Google Scholar 

  277. D. Meißner, et al, “The MOMS-2P Instrument and its Mission on Priroda/MIR Station,” IAF-96-B.4.03, 47th International Astronautical Congress, Oct. 7–11, 1996, Beijing, China

    Google Scholar 

  278. DASA Endbericht, “MOMS-02P auf Priroda/MIR,” Doc. No. M2P-DAS-100-RP-001.0, Dec. 12, 1996

    Google Scholar 

  279. S. Föckersperger, et al., “MOMSNAV: Location of the Russian Space Station MIR with Differential GPS,” Proceedings of the 2nd ESA International Conference on GNC, ESTEC, 12–15 April 1994, pp. 159–165

    Google Scholar 

  280. IKAR-D, -P and MSU-SK with forward look angle (in flight direction) of 40° against nadir

    Google Scholar 

  281. R. K. Raney, A.P. Luscombe, E.J. Langham, S. Ahmed “RADARSAT,” reprint from Proceedings of the IEEE, Vol. 79, No. 6, June 1991

    Google Scholar 

  282. RADARSAT Annual Review 1997/98, CSA brochure, p. 19

    Google Scholar 

  283. * Nominal: range dependent and processor dependent; ** Nominal: ground range resolution varies with range

    Google Scholar 

  284. http://radarsat.mda.ca

  285. http://www.space.gc.ca/csa_sectors/earth_environment/radarsat/default.asp

  286. P. Fox, “The RADARSAT-II Mission,” Proceedings of IGARSS′99, Hamburg, Vol. III, June 28–July 2, 1999, pp. 1500–1502

    Google Scholar 

  287. L. M. Ward, P. Axelrad, “A Combined Filter for GPS-Based Attitude and Baseline Estimation,” Navigation: Journal of The Institute of Navigation, Vol. 44, No. 2, Summer 1997, pp. 195–213

    Google Scholar 

  288. L. M. Ward, P. Axelrad, “Spacecraft attitude estimation using GPS: Methodology and results for RADCAL, .” Navigating the 90s: Technology, Applications, and Policy, Proceedings of The Institute of Navigation, National Technical Meeting, Anaheim, Calif., 18–20 January, The Institute of Navigation, Alexandria, Va., pp. 813–825.

    Google Scholar 

  289. ‘Sowjetisches kosmisches System zum Studium der Naturschätze der Erde und zur Umweltkontrolle — der heutige Stand und die Perspektiven für den Zeitraum 1991–1995,’ the paper is a translation of a presentation given by L. Dessinow of the USSR Academy of Sciences in 1989.

    Google Scholar 

  290. Interavia Space Directory 1990–91, p. 436

    Google Scholar 

  291. E. L. Lukashevich, “The Space System Resurs-F for the Photographic Survey of the Earth,” Space Bulletin, Vol. 1, No. 4, 1994, pp. 2–4

    Google Scholar 

  292. Information provided by the State Center “PRIRODA,” Moscow

    Google Scholar 

  293. Courtesy of E. L. Lukashevich of State Center Priroda, Moscow

    Google Scholar 

  294. Note: For S/C No. 37 and (39), the orbit was changed from an altitude of 275 km (275 km) to an altitude of 355 km (180 km), respectively

    Google Scholar 

  295. T.M. Wasjuchina, A.M. Wolkow, “Zustand und Perspektiven der Entwicklung Kosmischer Systeme zur Erforschung natürlicher Ressourcen der Erde und der Hydrometeorologie,” Moscow 1988, translated into German by R. Müller, 1989 (IKF)

    Google Scholar 

  296. COSPAR-90-Paper by A. Karpov, USSR State Committee for Hydrometeorology, Moscow. Title of paper: “Hydrometeorological, Oceanographic and Earth-Resources Satellite Systems operated by the USSR.”

    Google Scholar 

  297. Information provided by B. Kutuza of IRE, Moscow, and translated by B. Zhukov of DLR, Oberpfaffenhofen

    Google Scholar 

  298. R. Sparvoli, et al., “Launch in orbit of the telescope NINA for cosmic ray observations: preliminary results,” Proceedings of The Sixth Topical Seminar on ‘Neutrino and Astro -Particle Physics,’ Centro Studi ‘I Cappuccini’ in San Miniato al Todesco, Italy, May 17–21, 1999

    Google Scholar 

  299. http://www.nspo.gov.tw/e40/welcome.htm

  300. http://www.nspo.gov.tw/e-html.v30/welcome.html

  301. W. Ferster, “ROCSat Set to Launch Taiwan’s Space Program,” Space News, Feb. 1, 1999, p. 7

    Google Scholar 

  302. http://tours.oce.ntou.edu.tw/crocsat.htm

  303. H. C. Wang, L. C. Lee, J. Ling, A. M. Wu, “ROCSat-2 Remote Sensing Mission,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-B.1.09

    Google Scholar 

  304. J. S. Chern, A. M. Wu, J. Ling, “Some Aspects of ROCSat-2 System Engineering,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 57–60

    Google Scholar 

  305. C. Alonso, “SAC-C Mission,” presented at the Euro-Latin-American Space Days in Mexico DC in November 1997

    Google Scholar 

  306. R. Colomb, C. Alonso, I. Nollmann, “SAC-C Mission and the International AM Constellation for Earth Observation,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 433–437

    Google Scholar 

  307. CONAE-NASA Workshop, Volume I and II, Dec. 1–2, 1993 — paper provided by J. L. LaBreque of NASA-HQ

    Google Scholar 

  308. Information provided by Andrea Bacchetta of Alenia Spazio, Torino, Italy

    Google Scholar 

  309. Information provided by Robert Ecoffet of CNES

    Google Scholar 

  310. Lee-Lueng Fu, B. Holt, “Seasat Views Oceans and Sea Ice With Synthetic Aperture Radar,” JPL publication 81–120, February 15, 1982

    Google Scholar 

  311. Ch. Elachi, “Spaceborne Imaging Radar: Geologic and Oceanographic Applications,” Science, Vol. 209, No. 4461,, September 5, 1980, pp. 1073–1082

    Google Scholar 

  312. R. L. Jordan, “The Seasat-A synthetic-aperture radar systems,” IEEE Journal of Oceanic Eng., Vol. OE-5, pp. 154–164, 1980.

    Google Scholar 

  313. E. Njoku, et al., “The Seasat Scanning Multichannel Microwave Radiometer (SMMR): instrument description and performance,” IEEE Journal of Oceanic Eng., Vol. OE-5, pp. 100–115, 1980

    Google Scholar 

  314. P. N. Swanson, A. L. Riley, “The SeaSAT Scanning Multichannel Microwave Radiometer (SMMR): Radiometric calibration algorithm development and performance,” IEEE Journal of Ocean Engineering, Vol 5 No.2, 1980, pp. 116–124

    Google Scholar 

  315. W. Townsend, “An initial assessment of the performance achieved by the Seasat-1 radar altimeter,” IEEE Journal of Oceanic. Eng., Vol. OE-5, pp. 80–92, 1980

    Google Scholar 

  316. J. W. Johnson, et al., “Seasat-A satellite scatterometer instrument evaluation,” IEEE Journal of Oceanic Eng., Vol. OE-5, pp. 138–144, 1980

    Google Scholar 

  317. P. McClain, R. Marks, G. Cunningham, A. McCulloch, “Visible and Infrared Radiometer on Seasat-1,” IEEE Journal on Oceanic Engineering, Vol. OE-5, No. 2, April 1980, pp 164–168

    Google Scholar 

  318. P. Silvestrin, M. Berger, Y. H. Kerr, J. Font, “ESA’s Second Earth Explorer Opportunity Mission: The soil Moisture and Ocean salinity Mission — SMOS.” IEEE Geoscience and Remote Sensing Newsletter (118), 2001, pp.11–14

    Google Scholar 

  319. J. Blouvac, B. Lazaed, J. M. Martinuzzi, “ CNES Small Satellites Earth Observation Scientific Future Missions, IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 11–14

    Google Scholar 

  320. M. Martin-Neira, J. Font, M. Srokosz, I. Corbella, A. Camps, “Ocean Salinity Observations with SMOS Mission,” Proceedings of the IEEE IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  321. Y. H. Kerr, J. Font, P. Waldteufel, M. Berger, “The Soil Moisture and Ocean Salinity Mission -SMOS,” ESA Earth Observation Quarterly, No 66, July 2000, pp. 18–26

    Google Scholar 

  322. Y. H. Kerr, P. Waldteufel, J. P. Wigneron, J. Font, “Description of the Soil Moisture and Ocean Salinity Mission,” COST 712 -WG 3 report, 2001, European Union, Brussels

    Google Scholar 

  323. http://www.cesbio.ups-tlse.fr/indexsmos.html

  324. J. Font, Y. Kerr, M. Berger, “Measuring Ocean Salinity from Space: the European Space Agency’s SMOS Mission,” Backscatter (Alliance for Marine Remote Sensing Association), Vol. 11, No 3, 2000, pp. 17–19

    Google Scholar 

  325. Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, J. Font, “The Soil Moisture and Ocean Salinity Mission: The Science Objectives of an L-band 2-D Interferometer,” Proceedings of the IEEE IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  326. Y. Kerr, J. Font, et al., “Next Generation Radiometers: SMOS — A Dual Pol L-band 2-D Apertures Synthesis Radiometers,” 2000 IEEE Aerospace Conference, March 2000, Montana, USA

    Google Scholar 

  327. J. P. Wigneron, A. Chanzy, P. Waldteufel, J. C. Calvet, O. Marloie, J. P. Hanocq, Y. H. Kerr, “Retrieval capabilities of L-Band 2-D interferometric radiometry over land surfaces (SMOS Mission), VSP, Netherlands, 2000

    Google Scholar 

  328. J. P. Wigneron, P. Waldteufel, A. Chanzy, J. C. Calvet, Y. H. Kerr, “Two-D microwave interferometer retrieval capabilities of over land surfaces (SMOS Mission),” Remote Sensing Environment, Vol. 73, No 3, 2000, pp. 270–282

    Google Scholar 

  329. Note: SSS is defined in practical salinity units (1 PSU = 0.1%) and ranges from 32 to 37 PSU

    Google Scholar 

  330. P. Waldteufel, E. Anterrieu, J. M. Goutoule, Y. H. Kerr, “Field of view characteristics of a 2-D interferometric antenna, as illustrated by the MIRAS/SMOS L-band concept, VSP, 2000

    Google Scholar 

  331. Y. H. Kerr, J. Font, P. Waldteufel, A. Camps, J. Barâ, et al., “Next Generation Radiometers: SMOS A dual pol L-band 2-D Aperture Synthesis Radiometer,” IEEE Aerospace Conference, Big Sky, Montana, March 18–25, 2000

    Google Scholar 

  332. I. Corbella, F. Torres, et al., L-band Aperture Synthesis Radiometry: Hardware Requirements and System Performance,” Proceeding of the IEEE IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  333. CNES viewgraphs of 1991

    Google Scholar 

  334. Jane’s Spaceflight Directory 1988–89, Fourth Edition, pp. 22–23

    Google Scholar 

  335. Note: SPOT-1 was retired from normal operations in Sept. 1990. Both of its recorders are defect. SPOT Image wants to reactivated SPOT-1 to meet increased demand for satellite imagery. See Space News Dec. 4, 1991, p. 4

    Google Scholar 

  336. Note: The board of inquiry investigating the failure of SPOT-3 reported that the successive failure of three of the spacecraft’s six gyroscopes caused the satellite to lose attitude control, ran out of power and then shut down within a period of hours.

    Google Scholar 

  337. R. M. Bevilacqua, et al., “Polar Stratospheric Studies with the Polar Ozone and Aerosol Measurement Experiment (POAM-II),” Proceedings of the American Meteorological Society, Eighth Conference on Atmospheric Radiation, January 23–28, 1994, Nashville, TN

    Google Scholar 

  338. F. Achard, J. P. Malingreau, T. Phulpin, G. Saint, B. Saugier, B. Segun, D. Vidal-Madjar, “The Vegetation Instrument on Board SPOT-4 — A Mission for Global Monitoring of the Continental Biosphere, “ LERTS brochure, Toulouse, 1990

    Google Scholar 

  339. http://spot4.cnes.fr/

  340. Information provided by T. Genet of CNES, Toulouse

    Google Scholar 

  341. http://sirius-ci.cst.cnes.fr:8080/

  342. http://www.cnes.fr/WEB_UK/activites/programmes/Vegetation/VEGETATION.html

  343. R. H. Frazer, Z. Li, R. Landry, “SPOT VEGETATION for characterizing boreal forest fires,” International Journal of Remote Sensing, Vol. 21, No 18, 2000, pp. 3525–3532

    Google Scholar 

  344. T. Tolker-Nielsen, J. C. Guillen, “SILEX: The First European Optical Communication Terminal in Orbit,” ESA Bulletin 96, Nov. 1998, pp. 42–44

    Google Scholar 

  345. A. F. Popescu, B. Furch, “Status of the European developments for laser intersatellite communications,” SPIE, Vol. 1866, 1993, pp. 10–20

    Google Scholar 

  346. R. L. Lucke, D. R. Korwan, et al., “The Polar Ozone and Aerosol Measurement (POAM-III) instrument and early validation results,” Journal of Geophysical Research, Vol. 104, D15, Aug. 20, 1999, pp. 18, 785–18, 799

    Google Scholar 

  347. A. Ammar, A. Baudoin, D. Assemat, M. Arnaud, “The SPOT Programme, An Operational Earth Observation System,” Proceedings 45th Congress of the International Astronautical Federation, October 9–14, 1994, Israel

    Google Scholar 

  348. A. Baudoin, “The Current and Future SPOT Program,” Proceedings of the ISPRS Joint Workshop ‘Sensors and Mapping from Space 1999,’ Sept. 27–30, 1999, Hannover, Germany

    Google Scholar 

  349. SPOT 5 brochure, “Supermode,” of CNES and SPOT Image, May 1999

    Google Scholar 

  350. P. Lier, G. Moury, C. Latry, F. Cabot, “Selection of the SPOT-5 Image Compression Algorithm,” Proceedings of SPIE, Vol. 3439, 70, 1998

    Google Scholar 

  351. H. Carvalho, J. Kono, M. M. Quintino, C. E. Santana, “The Amazon Rainforest Monitoring Satellite — SSR,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 19–21

    Google Scholar 

  352. C. H. Santana, C. E. Kono, M. M. Quintino, “SSR Amazon Rainforest Observation System,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 49–52

    Google Scholar 

  353. “The first Brazilian Earth Observation Satellite (SSR),” paper by C. E. Santana and J. Kono of INPE

    Google Scholar 

  354. “Satellite Launch to Advance Brazilian Space Program,” Space News Aug. 31-Sept. 6, 1992, p. 43

    Google Scholar 

  355. R. Dubayah, B. Blair, J. Bufton, D. Clarke, et al., “The Vegetation Canopy Lidar Mission,” presented at ASPRS, Washington, D.C., 1997

    Google Scholar 

  356. http://essp.gsfc.nasa.gov/vcl.html

  357. Information provided by Nick Chrissotimos of NASA/GSFC

    Google Scholar 

  358. Information provided by E. Milton and M. Fouquet of SSTL

    Google Scholar 

  359. URL address — http://www.ee.surrey.ac.uk/CSER/UOSAT

  360. J. W. Ward, “Microsatellites for global electronic mail networks,” Electronics and Communications Engineering Journal, December 1991, Vol. 3, No. 6, pp. 267–272

    Google Scholar 

  361. J. W. Ward, H. E. Price, “The UoSAT-2 Digital Communications Experiment,” Journal of the Institute of Electronic and Radio Engineers, 1986

    Google Scholar 

  362. UoSAT internet home page

    Google Scholar 

  363. J. W Ward, Ada S. C, “An Evolutionary Approach to Small Satellite Technology Development.” Proceedings of the 9th AIAA/USU Conference on Small Satellites, Sept. 18–21, 1995, Logan, UT

    Google Scholar 

  364. UoSAT-1: Special issue of The IERE Journal, Vol. 52, No. 8/9, August 1982

    Google Scholar 

  365. J. M. Radbone, “The UoSAT-2 Spacecraft CCD Imaging and Digital Store/Read-out Experiments,” The IERE Journal, Vol. 57, No. 5, September 1987, ISSN 0267–1689

    Google Scholar 

  366. M. N. Sweeting, “UoSAT microsatellite missions,” Electronics & Communication Engineering Journal, IEE, June 1992

    Google Scholar 

  367. M. N. Allery, J. J. Sellers, M. N. Sweeting, “Results of University of Surrey on-orbit microsatellite experiments,” Proceedings of the International Symposium on Small Satellite Systems and Services, Biarritz, France, June 27–30, 1994

    Google Scholar 

  368. M. Fouquet, “The UoSAT-5 Earth Imaging System — in-orbit results,” 2nd Conference on Small Satellite Technologies and Applications, SPIE Symposium on Aerospace Sensing, Orlando, FL, April 20–22, 1992

    Google Scholar 

  369. I. Lee, D. K. Sung, S. D. Choi, “Experimental Multimission Microsatellites — KITSAT Series,” Proceedings of the 7th AIAA/USU Conference on Small Satellites, Set. 13–16, 1993

    Google Scholar 

  370. Information provided by J. Radbone of SSTL, University of Surrey, UK

    Google Scholar 

  371. “First PoSAT images,” Space, Vol. 9, No. 9, December 1993, p. 6

    Google Scholar 

  372. M. Fouquet, A. Brewer, “The Role of Microsatellites for Earth Observation, Eight years of orbital experience at the University of Surrey,” in Small Satellites for Remote Sensing, Proceedings of Space Congress, Bremen, Germany, May 24–25, 1995, pp. 133–144

    Google Scholar 

  373. “Space Debris Damages French Defense Satellite,” Space News, August 26 — September 1, 1996, p. 4 and p. 19

    Google Scholar 

  374. J. Ward, M. Sweeting, “First In-Orbit Results from the UoSAT-12 Minisatellite,” Proceedings of 13th Annual AIAA/USU Conferences on Small Satellites, Logan, Utah, Aug. 23–26, 1999, SSC-99-I-2

    Google Scholar 

  375. W. Sun, M. N. Sweeting, “In-Orbit Results from UoSAT-12 Earth Observation Minisatellite Mission,” Proceedings of the 3rd International Symposium of IAA, Berlin, April, 2–6, 2001, pp. 79–82

    Google Scholar 

  376. M. Fouquet, M. Sweeting, “UoSAT-12 Minisatellite for High Performance Earth Observation at Low Cost,” Acta Astronautica, Vol. 41, No. 3, pp. 173–182, 1997

    Google Scholar 

  377. A. Wicks, A. da Silva-Curiel, J. Ward, M. Fouquet, “ Advancing Small Satellite Earth Observation: Operational Spacecraft, Planned Missions and Future Concepts,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-I-8

    Google Scholar 

  378. S. Purivigraipong, M. J. Unwin, Y. Hashida, “Demonstrating GPS Attitude Determination from UoSat-12 Flight Data,” ION-2000, Salt Lake City, UT, Sept. 19–22, 2000, pp. 2625–2633

    Google Scholar 

  379. Tai Wei Chua, et al., “Merlion L&S-band System,” Proceedings of 13th Annual AIAA/USU Conferences on Small Satellites, Logan, Utah, Aug. 23–26, 1999, SSC-99-I-1

    Google Scholar 

  380. http://www.ee.surrey.ac.uk/CSER/UOSAT/missions/tmsat/info/index.html

  381. Data sheets provided by Craig Underwood of SSTL

    Google Scholar 

  382. J. Singer, “US Eyes British Demonstration Satellite,” Space News, Oct. 23, 2000, pp. 3 and 19

    Google Scholar 

  383. A. Cropp, “The SNAP-1 NanoSat Project at Surrey — A New Generation of Satellites,” Proceedings of the 49th IAF Congress, Melbourne, Australia, Sept. 1998

    Google Scholar 

  384. Z. A. Wahl, K. L. Walker, J. Ward, “Modular and Reusable Miniature Subsystems for Small Satellites: An Example Describing Surrey’s Nanosatellite S-Band Downlink,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-IX-4

    Google Scholar 

  385. H. Steyn, et al., “An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-VIII-8

    Google Scholar 

  386. R. Lancaster, C. Underwood, “The SNAP-1 Machine Vision System,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-II-6

    Google Scholar 

  387. http://www.ee.surrey.ac.uk/EE/CSER/UOSAT/missions/SNAP/nanosat/index.htm

  388. http://www.sstl.co.uk/services/subpage_services.html

  389. D. Gibbon, J. Ward, N. Kay, “The Design, Development and Testing of a Propulsion System for the SNAP-1 Nano-satellite,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000

    Google Scholar 

  390. Information provided by Craig Underwood of SSTL, Surrey, UK

    Google Scholar 

  391. M. J. Unwin, P. L. Palmer, Y. Hashida, C. I. Underwood, “The SNAP-1 and Tsinghua-1 GPS Formation Flying Experiment,” ION GPS 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 1608–1611

    Google Scholar 

  392. You Zheng, Gong Ke, M. Sweeting, “Tsinghua Micro/Nanosatellite research and its application,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-IX-3

    Google Scholar 

  393. http://www.ee.surrey.ac.uk/CSER/UOSAT/press/cjv.htm

  394. Y. Zheng. M. Sweeting, “Initial Mission Status Analysis of 3-axis stable Tsinghua-1 Microsatellite,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000

    Google Scholar 

  395. http://www.atmsb.com.my/

  396. TiungSat-1 data sheet of SSTL provided by Craig Underwood

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (2002). Earth Observation/Monitoring Missions. In: Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56294-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56294-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62688-3

  • Online ISBN: 978-3-642-56294-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics