A New Fast Multipole Boundary Integral Equation Method in Elastostatic Crack Problems in 3D

  • Ken-ichi Yoshida
  • Naoshi Nishimura
  • Shoichi Kobayashi
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 19)

Abstract

This paper discusses a formulation and its applications of the new Fast Multipole Method (FMM) to three-dimensional Boundary Integral Equation Method (BIEM) in elastostatic crack problems. It is shown, through numerical experiments, that the new FMM is more efficient than the original FMM.

Keywords

cosB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comp. Phys. 60 (1985) 187–207MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. The MIT Press, Cambridge (1987)Google Scholar
  3. 3.
    Nishimura, N., Yoshida, K. and Kobayashi, S.: A fast multipole boundary integral equation method for crack problems in 3D. Eng. Anal. Boundary Elements. 23 (1999) 97–105MATHCrossRefGoogle Scholar
  4. 4.
    Pu, Y., Klimkowski, K.J., Rodin, G.J., Berger, E., Browne, J.C., Singer, J.K., van de Geijin, R.A. and Vemaganti, K.S.: A fast solution method for three-dimensional many-particle problems of linear elasticity. Int. J. Num. Meth. Eng. 42 (1998) 1215–1229CrossRefGoogle Scholar
  5. 5.
    Fukui, T. and Kutsumi, T.: Fast multipole boundary element method in three dimensional elastostatic problems. Proc. 15th Japan Nat. Symp. BEM. 15 (1998) 99–104 (in Japanese)Google Scholar
  6. 6.
    Takahashi, T., Kobayashi, S. and Nishimura, N.: Fast multipole BEM simulation of overcoring in an improved conical-end borehole strain measurement method. Mechanics and Engineering in Honor of Professor Qinghua Du’s 80th Anniversary. Tsinghua University Press, Beijing (1999) 120–127Google Scholar
  7. 7.
    Yoshida, K., Nishimura, N. and Kobayashi, S.: Analysis of three dimensional elastostatic crack problems with fast multipole boundary integral equation method. J. Appl. Mech. JSCE. 1 (1998) 365–372 (in Japanese)Google Scholar
  8. 8.
    Yoshida, K., Nishimura, N. and Kobayashi, S.: Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D, Int. J. Num. Meth. Eng. 50 (2001) 525–547MATHCrossRefGoogle Scholar
  9. 9.
    Fujiwara, H.: The fast multipole method for solving integral equations of three-dimensional topography and basin problems, Geophys. J. Int. 140 (2000) 198–210CrossRefGoogle Scholar
  10. 10.
    Yoshida, K., Nishimura, N. and Kobayashi, S.: Analysis of three dimensional scattering of elastic waves by a crack with fast multipole boundary integral equation method. J. Appl. Mech. JSCE. 3 (2000) 143–150 (in Japanese)Google Scholar
  11. 11.
    Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. Comp. Phys. 86 (1990) 414–439MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Rokhlin, V.: Diagonal forms of translation operator for the Helmholtz equation in three dimensions. Appl. Comp. Harmon. Anal. 1 (1993) 82–93MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Elliot, W.D. and Board, J.A. JR.: Fast Fourier transform accelerated fast multipole algorithm. SIAM J. Sci. Comp. 17 (1995) 398–415CrossRefGoogle Scholar
  14. 14.
    Dembart, B. and Yip, E.: The accuracy of fast multipole methods for Maxwell’s equations. IEEE Comp. Sci. Eng. 5 (1998) 48–56CrossRefGoogle Scholar
  15. 15.
    Hrycak, T. and Rokhlin, V.: An improved fast multipole algorithm for potential fields. SIAM J. Sci. Comp. 19 (1998) 1804–1826MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Greengard, L. and Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numerica 6 (1997) 229–270MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cheng, H., Greengard, L. and Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comp. Phys. 155 (1999) 468–498MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Greengard, L., Huang, J., Rokhlin, V. and Wandzura, S.: Accelerating fast multipole methods for the Helmholtz equation at low frequencies. IEEE Comp. Sci. Eng. 5 (1998) 32–38CrossRefGoogle Scholar
  19. 19.
    Yoshida, K., Nishimura, N. and Kobayashi, S.: Application of new fast multipole boundary integral equation method to crack problems in 3D. Eng. Anal. Boundary Elements (to appear)Google Scholar
  20. 20.
    Yarvin, N. and Rokhlin, V.: Generalized Gaussian quadratures and singular value decomposition of integral operators. SIAM J. Sci. Comp. 20 (1998) 699–718MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pérez-Jordá, J.M. and Yang, W.: A concise redefinition of the solid spherical harmonics and its use in fast multipole methods. J. Chem. Phys. 104 (1996) 8003–8006CrossRefGoogle Scholar
  22. 22.
    Biedenharn, L.C. and Louck, J.D.: Angular momentum in Quantum Physics: Theory and Application. Addison Wesley, London (1981)MATHGoogle Scholar
  23. 23.
    Nishida, T. and Hayami, K.: Application of the fast multipole method to the 3D BEM analysis of electron guns. Boundary Elements XIX. Computational Mechanics Publications, Southampton (1997) 613–622Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ken-ichi Yoshida
    • 1
  • Naoshi Nishimura
    • 1
  • Shoichi Kobayashi
    • 2
  1. 1.Dept. Global Env. Eng.Kyoto UniversityKyotoJapan
  2. 2.Dept. Construction Eng.Fukui University of TechnologyFukuiJapan

Personalised recommendations