Skip to main content

Theoretical and Numerical Analysis on 3-Dimensional Brittle Fracture

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 19))

Abstract

In this paper, we propose a mathematical formulation of 3-dimensional quasi-static brittle fracture under varying loads. We give a precise formulation of internal cracking and surface cracking in 3D elastic bodies. In Sections 2 and 3, we provide geometrical results and results on Sobolev spaces. Most criteria in fracture mechanics are based on Griffith’s energy balance theory, which is explained briefly in Section 5. G J-integral is proposed by the author (1981), which is a generalization of J-integral widely used in 2D fracture problems. G J-integral expresses the variation of energies with respect to crack extensions and relates to Griffith’s energy balance theory. Under varying loads, we cannot use Griffith’s energy balance theory directly, however G J-integral is applicable to such cases too. For practical use, we must study the combination with numerical calculation. In the last section, we give an error estimate for finite element approximation of G J-integral.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, M., Nazarov, S.A.: Smoothness properties of solutions to variational inequalities describing extension of mode-1 cracks. Mathematical aspects of boundary element methods (Palaiseau, 1998), 23–32, Chapman & Hall/CRC Res. Notes Math., 414, Boca Raton, FL, 2000.

    Google Scholar 

  2. Cherepanov, G. P.: Crack propagation in continuous media, J. Appl. Math. Mech., 31(1967), 503–512.

    Article  MATH  Google Scholar 

  3. Duduchava, R., Wendland, W.L.: The wiener-hopf method for systems of pseu-dodifferential equations with an application to crack problems, Integral Equations Oper. Theory, 23(1995), 294–335.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dunford, N., Schwartz, J.T.: Linear operators Part I, Interscience Publishers Inc., New York, 1967, pp. 265–266.

    Google Scholar 

  5. Griffith, A. A.: The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. Ser. A 221(1920), 163–198.

    Article  Google Scholar 

  6. Griffith, A. A.: The phenomena of rupture and flow in solids, Philosophical Transactions, Royal Society of London, Series A, Vol. 211, 1921, pp. 163–198.

    Article  Google Scholar 

  7. Hörmander, L.: Linear partial differential operators, Springer-Verlag, 1969.

    Google Scholar 

  8. Irwin, G. R.: Fracture mechanics, in the book “Structural mechanics”, Pergamon Press, 1958, 557–594.

    Google Scholar 

  9. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Volume 1, Interscience Publ., 1963.

    Google Scholar 

  10. Lang, S.: Differential Manifolds, Addison-Wesley, Massachusetts-Menlo Park·Calfornia·London·Don Mills·Ontario, 1972

    MATH  Google Scholar 

  11. Leblond, J.-B., Torlai, O.: The stress field near the front of an arbitrarily shaped crack in a three-dimensional elastic body, J. Elasticity, 29(1992), 97–131

    Article  MATH  Google Scholar 

  12. Necas, J.: Méthodes Directes en Th’ eorie des Équations Elliptiques, Masson Éditeur, Paris, 1967.

    Google Scholar 

  13. Ohtsuka, K.: J-integral and two-dimensional fracture mechanics, RIMS Kokyuroku, Kyoto Univ., 386(1980), 231–248.

    Google Scholar 

  14. K. Ohtsuka, Generalized J-integral and three dimensional fracture mechanics I, Hiroshima Math. J., 11(1981), 21–52.

    MathSciNet  MATH  Google Scholar 

  15. Ohtsuka, K.: Remark on Griffith’s energy balance for three-dimensional fracture problems, Memor. Hiroshima-Denki Institute of Technology and Hiroshima Junior College of Automotive Engineering, 16(1983), 31–36.

    Google Scholar 

  16. Ohtsuka, K.: Generalized J-integral and its applications. I. Basic theory. Japan J. Applied Math., 1985, 2, 329–350.

    MathSciNet  MATH  Google Scholar 

  17. Ohtsuka, K.: Sobolev space H 1 on a domain with a surface cut, Memor. Hiroshima-Denki Institute of Technology and Hiroshima Junior College of Automotive Engineering, 18(1985), 51–57.

    Google Scholar 

  18. Ohtsuka, K.: Generalized J-integral and three-dimensional fracture mechanics. II. Surface crack problems, Hiroshima Math. J., 16(1986), 327–352.

    MathSciNet  MATH  Google Scholar 

  19. Ohtsuka, K.: Mathematical aspects of fracture mechanics, Lecture Notes in Num. Appl. Anal., 13(1994), 39–59.

    MathSciNet  Google Scholar 

  20. Ohtsuka, K.: Mathematical analysis of 3-D fracture phenomenon by Griffith’s energy balance theory under increasing loads, Theoretical and Applied Mechanics, 45(1996), 99–103.

    Google Scholar 

  21. Ohtsuka, K., Pironneau, O., Hecht, F.: Theoretical and numerical analysis of energy release rate in 2D fracture, INFORMATION, 3(2000), 303–315.

    MathSciNet  MATH  Google Scholar 

  22. Ohtsuka, K., Khludnev, A.: Generalized J-integral method for sensitivity analysis of static shape design, Control and Cybernetics, 29(2000), 513–533.

    MathSciNet  MATH  Google Scholar 

  23. Ohtsuka, K.: What’s the crack extension force in three-dimensional quasi-static brittle fracture, Free boundary problems, Theory and Applications II, 2000, 344–357.

    Google Scholar 

  24. Teman, R.: Navier-Stokes equations, North-Holland, 1979.

    Google Scholar 

  25. Ting, T.C.T.: Asymptotic solutions near the apex of an elastic wedge with curved boundaries. Q. Appl. Math. 42(1985), 467–476.

    MathSciNet  MATH  Google Scholar 

  26. Rice, J.R.: A path-independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35(1968), 379–386.

    Article  Google Scholar 

  27. Wahlbin, Lars B.: Local behavior in finite element methods, Handbook of numerical analysis Vol.2(editors P.G. Ciarlet and J.L. Lions), 353–522, North-Holland, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohtsuka, K. (2002). Theoretical and Numerical Analysis on 3-Dimensional Brittle Fracture. In: Babuška, I., Ciarlet, P.G., Miyoshi, T. (eds) Mathematical Modeling and Numerical Simulation in Continuum Mechanics. Lecture Notes in Computational Science and Engineering, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56288-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56288-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42399-7

  • Online ISBN: 978-3-642-56288-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics