Advertisement

Key Genes of Crop Domestication and Breeding: Molecular Analyses

  • Günter Theißen
Part of the Progress in Botany book series (BOTANY, volume 63)

Abstract

The life of human beings depends on a sufficient supply with fruits, grains and vegetables, which are consumed either directly, or fed to livestock. Without crop plants such as rice, maize, wheat, tomato, potato, beans, apples and so on, human civilization as we know it would not exist. The importance of crop plants for human culture thus can hardly be overestimated. Most calories consumed by humans and livestock derive from cereals, the three globally most important of which are wheat (Triticum aestivum), rice (Oryza sativa) and maize (Zea mays ssp. mays).

Keywords

Quantitative Trait Locus Fruit Weight Green Revolution Abscission Zone Female Inflorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the oc-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289PubMedCrossRefGoogle Scholar
  2. Barton NH, Turelli M (1989) Evolutionary quantitative genetics: how little do we know? Annu Rev Genet 23:337–370PubMedCrossRefGoogle Scholar
  3. Beadle GW (1980) The ancestry of corn. Sci Am 242:96–103CrossRefGoogle Scholar
  4. Becker A, Winter K-U, Meyer B, Saedler H, Theißen G (2000) MADS-box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17:1425–1434PubMedCrossRefGoogle Scholar
  5. Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222PubMedCrossRefGoogle Scholar
  6. Doebley J (1990) Molecular evidence and the evolution of maize. Econ Bot 44 (Suppl 3):6–27CrossRefGoogle Scholar
  7. Doebley J (1992) Mapping the genes that made maize. Trends Genet 8:302–307PubMedGoogle Scholar
  8. Doebley J (2000) A tomato gene weighs in. Science 289:71–72PubMedCrossRefGoogle Scholar
  9. Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082PubMedGoogle Scholar
  10. Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295PubMedGoogle Scholar
  11. Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570PubMedGoogle Scholar
  12. Doebley J, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci USA 87:9888–9892PubMedCrossRefGoogle Scholar
  13. Doebley J, Stec A, Gustus C (1995) Teosinte branched I and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346PubMedGoogle Scholar
  14. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedCrossRefGoogle Scholar
  15. Ferrándiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem 68:321–354PubMedCrossRefGoogle Scholar
  16. Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF (2000a) Redundant regulation of meris- tem identity and plant architecture by Fruitfull, Apetala1 and Cauliflower. Development 127:725–734PubMedGoogle Scholar
  17. Ferrándi C, Liljegren SJ, Yanofsky MF (2000b) Negative regulation of the Shatterproof genes by Fruitfull during Arabidopsis fruit development. Science 289:436–438CrossRefGoogle Scholar
  18. Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meiler J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  19. Gottlieb LD (1984) Genetics and morphological evolution in plants. Am Nat 123:681–709CrossRefGoogle Scholar
  20. Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517PubMedGoogle Scholar
  21. Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360PubMedCrossRefGoogle Scholar
  22. Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525PubMedCrossRefGoogle Scholar
  23. Koornneef M, Stam P (2001) Changing paradigms in plant breeding. Plant Physiol 125:156–159PubMedCrossRefGoogle Scholar
  24. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) Shatterproof Mads-box genes control seed dispersal in Arabidopsis. Nature 404:766–770PubMedCrossRefGoogle Scholar
  25. Lowman AC, Purugganan MD (1999) Duplication of the Brassica oleracea Apétala 1 floral homeotic gene and the evolution of domesticated cauliflower. J Hered 90:514–520PubMedCrossRefGoogle Scholar
  26. Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799PubMedCrossRefGoogle Scholar
  27. Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367–376PubMedCrossRefGoogle Scholar
  28. Mao L, Begum D, Chuang H-W, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) Jointless is a Mads-box gene controlling tomato flower abscission zone development. Nature 406:910–913PubMedCrossRefGoogle Scholar
  29. Moffat AS (2000) Can genetically modified crops go ’greener’? Science 290:253–254PubMedCrossRefGoogle Scholar
  30. Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu S-C, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718PubMedCrossRefGoogle Scholar
  31. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ’Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  32. Szabó VM, Burr B (1996) Simple inheritance of key traits distinguishing maize and teosinte. Mol Gen Genet 252:33–41PubMedCrossRefGoogle Scholar
  33. Theißen G (2000a) Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus’ monstrous flower. Bioessays 22:209–213PubMedCrossRefGoogle Scholar
  34. Theißen G (2000b) Shattering developments. Nature 404:711–713PubMedCrossRefGoogle Scholar
  35. Theißen G (2001a) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85PubMedCrossRefGoogle Scholar
  36. Theißen G (2001b) Shatterproof oil seed rape: a Fruitfull business? Mads-box genes as tools for crop plant design. Biotech News Int 6:13–15Google Scholar
  37. Theißen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ’biogenetic law’ revisited. Curr Opin Genet Dev 5:628–639PubMedCrossRefGoogle Scholar
  38. Theißen G, Saedler H (2001) Floral quartets. Nature 409:469–471PubMedCrossRefGoogle Scholar
  39. Theißen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of Mads-box genes in plants. Plant Mol Biol 42:115–149PubMedCrossRefGoogle Scholar
  40. Wang R-L, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239PubMedCrossRefGoogle Scholar
  41. Von Sengbusch R (1934) Lupinen mit nichtplatzenden Hülsen. Züchter 6:1–5Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Günter Theißen
    • 1
  1. 1.Abteilung Molekulare PflanzengenetikMax-Planck-Institut für ZüchtungsforschungKölnGermany

Personalised recommendations