Skip to main content

Fractal and Multifractal Approaches in Physiology

  • Chapter
The Science of Disasters

Abstract

We explore the degree to which concepts developed in statistical physics can be usefully applied to physiological signals. We first review recent progress using two analysis methods: (i) detrended fluctuation analysis to quantify homogeneous structures, termed monofractals, which are characterized with the same scaling properties throughout the entire signal, and (ii) wavelet-based multifractal analysis to quantify signals of higher complexity, termed multi-fractals, which require many exponents to characterize their scaling properties. We next illustrate the problems related to physiological signal analysis with representative examples of heartbeat dynamics under healthy and pathological conditions. We discuss the findings of fractal and multifractal properties in the human heartbeat and how they change with disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.E.P. Box, G.M. Jenkins and G.C. Reinsel, Time Series Analysis: Forecasting and Control (Prentice-Hall, Englewood Cliffs, 1994).

    MATH  Google Scholar 

  2. M.F. Shlesinger, Ann. N. Y. Acad. Sci. 504, 214 (1987).

    Google Scholar 

  3. L.S. Liebovitch, Biophys. J. 55, 373 (1989).

    Article  Google Scholar 

  4. R.L. Stratonovich, Topics in the Theory of Random Noise, Vol. I (Gordon and Breach, New York, 1981).

    Google Scholar 

  5. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997).

    MATH  Google Scholar 

  6. C. Bernard, Les Phénoménes de la Vie (Baillière, Paris, 1878).

    Google Scholar 

  7. B. van der Pol and J. van der Mark, Philos. Mag. 6, 763 (1928).

    Google Scholar 

  8. W.B. Cannon, Physiol. Rev. 9, 399 (1929).

    Google Scholar 

  9. E.W. Montroll and M.F. Shlesinger, in Nonequilibrium Phenomena II: from Stochastics to Hydrodynamics, edited by L.J. Lebowitz and E.W. Montroll (North-Holland, Amsterdam, 1984), p. 1.

    Google Scholar 

  10. C.-K. Peng, S.V. Buldyrev, J.H. Hausforff, S. Havlin, J.E. Mietus, M. Simons, H.E. Stanley, and A.L. Goldberger, Integr. Physiol. Behav. Sci. 29, 283 (1994).

    Article  Google Scholar 

  11. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J.D. Farmer, Physica D 58, 77 (1992).

    Article  ADS  MATH  Google Scholar 

  12. A.R. Osborne and A. Provenzale, Physica D 35, 357 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. R.M. Berne and M.N. Levy, Cardiovascular Physiology, 6th edn. (Mosby, St. Louis, 1996).

    Google Scholar 

  14. R.L Kitney, D. Linkens, A.C. Selman, and A.A. McDonald, Automedica 4, 141 (1982).

    Google Scholar 

  15. A.L. Goldberger, Lancet 347, 1312 (1996).

    Article  Google Scholar 

  16. M.N. Levy, Circ. Res. 29, 437 (1971).

    Article  Google Scholar 

  17. M. Malik and A.J. Gamm (eds.). Heart Rate Variability (Futura, Armonk, 1995).

    Google Scholar 

  18. D.G. Michaels, E.P. Matyas and J. Jalife, Girc. Res. 55, 89 (1984).

    Article  Google Scholar 

  19. J.T. Bigger Jr., G.A. Hoover, R.G. Steinman, L.M. Rolnitzky, and J.L. Fleiss, Am. J. Gardiol. 21, 729 (1993).

    Article  Google Scholar 

  20. G. Sugihara, W. Allan, D. Sobel, and K.D. Allan. Proc. Natl. Acad. Sci. USA 93, 2608 (1996).

    Article  ADS  MATH  Google Scholar 

  21. M. Mackey and L. Glass, Science 197, 287 (1977).

    Article  ADS  Google Scholar 

  22. M.M. Wolf, G.A. Varigos, D. Hunt, and J.G. Sloman, Med. J. Aust. 2, 52 (1978).

    Google Scholar 

  23. L. Glass, P. Hunter, and A. McCulloch (eds.). Theory of Heart (Springer, New York, 1991).

    Google Scholar 

  24. J.B. Bassingthwaighte, L.S. Liebovitch, and B.J. West, Fractal Physiology (Oxford University Press, New York, 1994).

    Google Scholar 

  25. J. Kurths, A. Voss, P. Saparin, A. Witf, H.J. Kilner, and N. Wessel, Ghaos 5, 88 (1995).

    ADS  Google Scholar 

  26. R.L Kitney and O. Rompelman, The Study of Heart-Rate Variability (Oxford University Press, London, 1980).

    Google Scholar 

  27. S. Akselrod, D. Gordon, F.A. Ubel, D.G. Shannon, A.G. Barger, and R.J. Gohen, Science 213, 220 (1981).

    Article  ADS  Google Scholar 

  28. M. Kobayashi and T. Musha, IEEE Trans. Biomed. Eng. 29, 456 (1982).

    Article  Google Scholar 

  29. J.P. Saul, P. Albrecht, D. Berger, and R.J. Gohen, Computers in Cardiology (IEEE Computer Society, Washington, 1987).

    Google Scholar 

  30. D. Panter, Modulation, Noise and Spectral Analysis (McGraw Hill, New York, 1965).

    Google Scholar 

  31. P.Ch. Ivanov, M.G. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin, H.E. Stanley, and A.L. Goldberger, Physica A 249, 587 (1998).

    Article  Google Scholar 

  32. C.-K. Peng, J. Mietus, J.M. Hausdorff, S. Havlin, H.E. Stanley, and A.L. Goldberger, Phys. Rev. Lett. 70, 1343 (1993).

    Article  ADS  Google Scholar 

  33. S. Havlin et al., Phys. Rev. Lett. 61, 1438 (1988).

    Article  ADS  Google Scholar 

  34. M.F. Shlesinger and B.J. West, Random Fluctuations and Pattern Growth: Experiments and Models (Kluwer, Boston, 1988).

    Google Scholar 

  35. C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, and A.L. Goldberger, Phys. Rev. E 49, 1691 (1994).

    Article  ADS  Google Scholar 

  36. S.V. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.-K. Peng, M. Simons, and H.E. Stanley, Phys. Rev. E 51, 5084 (1995).

    Article  ADS  Google Scholar 

  37. S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng, H.E. Stanley, and M. Simons, Biophys. J. 65, 2673 (1993).

    Article  Google Scholar 

  38. S.M. Ossadnik, S.V. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, C.-K. Peng, M. Simons, and H.E. Stanley, Biophys. J. 67, 64 (1994).

    Article  Google Scholar 

  39. M.S. Taqqu, V. Teverovksy, and W. Willinger, Fractals 3, 785 (1996).

    Article  Google Scholar 

  40. A.L. Goldberger, D.R. Rigney, J. Mietus, E.M. Antman, and M. Greenwald, Experientia 44, 983 (1988).

    Article  Google Scholar 

  41. S. Thurner, M.G. Feurstein, and M.G. Teich, Phys. Rev. Lett. 80, 1544 (1998).

    Article  ADS  Google Scholar 

  42. L.A.N. Amaral, A.L. Goldberger, P.Ch. Ivanov, and H.E. Stanley, Phys. Rev. Lett. 81, 2388 (1998).

    Article  ADS  Google Scholar 

  43. C.-K. Peng, S. Havlin, H.E. Stanley, and A.L. Goldberger, in Proc. NATO dynamical disease conference, edited by L. Glass, Chaos 5, 82 (1995).

    Article  ADS  Google Scholar 

  44. Heart Failure Database (Beth Israel Deaconess Medical Center, Boston, MA). The database now includes 18 healthy subjects (13 female and five male, with ages between 20 and 50, average 34.3 yr), and 12 congestive heart failure subjects (three female and nine male, with ages between 22 and 71, average 60.8 yr) in sinus rhythm. [Data are freely available at the following URL: http://www.physionet.org.]

  45. F. Mallamace and H.E. Stanley (eds.). Physics of Complex Systems: Proc. Enrico Fermi School Phys., Course CXXXIV (IOS, Amsterdam, 1997).

    Google Scholar 

  46. P. Meakin, Fractals, Scaling and Growth Far from Equilibrium (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  47. R.G. Turcott and M.C. Teich, Ann. Biomed. Eng. 24, 269 (1996).

    Article  Google Scholar 

  48. K.K.L. Ho, G.B. Moody, C.-K. Peng, J.E. Mietus, M.C. Larson, D. Levy, and A.L. Goldberger. Circulation 96, 842 (1997).

    Article  Google Scholar 

  49. T.H. Mäkikallio, T. Seppänen, K.E.J. Airaksinen, J. Koistinen, M.P. Tulppo, C.-K. Peng, A.L. Goldberger, and H.V. Huikuri, Am. J. Cardiol. 80, 779 (1997).

    Article  Google Scholar 

  50. T.H. Mäkikallio, T. Ristimäe, K.E.J. Airaksinen, C.-K. Peng, A.L. Goldberger, and H.V. Huikuri, Am. J. Cardiol. 81, 27 (1998).

    Article  Google Scholar 

  51. H. Moelgaard, K.E. Soerensen, and P. Bjerregaard, Am. J. Cardiol. 68, 777 (1991).

    Article  Google Scholar 

  52. P.Ch. Ivanov, M.C. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin, H.E. Stanley, and A.L. Goldberger, Nature 383, 323 (1996).

    Article  ADS  Google Scholar 

  53. P.Ch. Ivanov, M.C. Rosenblum, C.-K. Peng, S. Havlin, H.E. Stanley, and A.L. Goldberger, in Wavelets in Physics, edited by H. van der Berg (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  54. P.Ch. Ivanov, A. Bunde, L.A.N. Amaral, S. Havlin, J. Fritsch-Yelle, R.M. Baevsky, H.E. Stanley, and A.L. Goldberger, Europhys. Lett. 48, 594 (1999).

    Article  ADS  Google Scholar 

  55. A.L. Goldberger, M.W. Bungo, R.M. Baevsky, B.S. Bennett, D.R. Rigney, J.E. Mietus, G.A. Nikulina, and J.B. Charles, Am. Heart J. 128, 202 (1994).

    Article  Google Scholar 

  56. R.W. Peters et al., J. Am. Coll. Cardiol. 23, 283 (1994).

    Article  Google Scholar 

  57. Behrens S. et al., Am. J. Cardiol. 80, 45 (1997).

    Article  Google Scholar 

  58. P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, and H.E. Stanley, Europhys. Lett. 43, 363 (1998).

    Article  ADS  Google Scholar 

  59. A. Bunde, S. Havlin, J.W. Kantelhardt, T. Penzel, J.-H. Peter, and K. Voigt, Phys. Rev. Lett. 85, 3736 (2000).

    Article  ADS  Google Scholar 

  60. H.E. Stanley, Nature 378, 554 (1995).

    Article  ADS  Google Scholar 

  61. A. Bunde and S. Havlin, Fractals in Science (Springer, Berlin, 1994).

    MATH  Google Scholar 

  62. L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Rev. B 31, 4725 (1985).

    Article  ADS  Google Scholar 

  63. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  64. J.F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991).

    Article  ADS  Google Scholar 

  65. J. Nittmann, G. Daccord, and H.E. Stanley, Nature 314, 141 (1985).

    Article  ADS  Google Scholar 

  66. J. Nittmann and H.E. Stanley, Nature 321, 663 (1986).

    Article  ADS  Google Scholar 

  67. P. Meakin, H.E. Stanley, A. Coniglio, and T.A. Witten, Phys. Rev. A 32, 2364 (1985).

    Article  ADS  Google Scholar 

  68. H.E. Stanley and P. Meakin, Nature 335, 405 (1988).

    Article  ADS  Google Scholar 

  69. H.E. Stanley, in Fractals and Disordered Systems, 2nd edn., edited by A. Bunde and S. Havlin (Springer, Berlin, 1996), p. 1.

    Chapter  Google Scholar 

  70. H.E. Stanley and P. Meakin, Nature 335, 405 (1988).

    Article  ADS  Google Scholar 

  71. C. Meneveau and K.R. Sreenivasan, Phys. Rev. Lett. 59, 1424 (1987).

    Article  ADS  Google Scholar 

  72. A.-L. Barabasi, P. Szépfalusy, and T. Vicsek, Physica A 178, 17 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  73. J. Lefebvre et al., Chaos 3, 267 (1993).

    Article  ADS  Google Scholar 

  74. Y. Yamamoto et al., Biol. Cybern. 69, 205 (1993).

    Article  Google Scholar 

  75. J.K. Kanters, N.H. Holstein-Rathlou, and E. Agner, J. Cardiovasc. Electrophysiol. 5, 128 (1994).

    Article  Google Scholar 

  76. G. Sugihara, W. Allan, D. Sobel, and K.D. Allan, Proc. Natl. Acad. Sci. USA 93, 2608 (1996).

    Article  ADS  MATH  Google Scholar 

  77. C.-S. Poon and C.K. Merrill, Nature 389, 492 (1997).

    Article  ADS  Google Scholar 

  78. J. F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev. E 47, 875 (1993).

    Article  ADS  Google Scholar 

  79. T. Vicsek, Fractal Growth Phenomena, 2nd edn. (World Scientific, Singapore, 1993).

    Google Scholar 

  80. A. Bunde and S. Havlin (eds.). Fractals in Science (Springer, Berlin, 1994).

    MATH  Google Scholar 

  81. A. Bunde and S. Havlin (eds.). Fractals and Disordered Systems, 2 edn., (Springer-Verlag, Berlin, 1996).

    MATH  Google Scholar 

  82. A.-L. Barabási and H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).

    Book  MATH  Google Scholar 

  83. H. Takayasu, Fractals in the Physical Sciences (Manchester University Press, Manchester, 1997).

    Google Scholar 

  84. H.E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951).

    Google Scholar 

  85. T.G. Dewey, Fractals in Molecular Biophysics (Oxford University Press, Oxford, 1997).

    MATH  Google Scholar 

  86. Z.R. Struzik, Fractals, 8(2), 163 (2000).

    Article  Google Scholar 

  87. Z.R. Struzik. Fractals, 9(1), 77 (2001).

    Article  MathSciNet  Google Scholar 

  88. T. Vicsek and A.-L. Barabási, J. Phys. A: Math. Gen. 24, L845 (1991).

    Article  ADS  Google Scholar 

  89. A.-L. Barabasi and H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995), Chap. 24.

    Book  MATH  Google Scholar 

  90. M.F. Shlesinger, Ann. N. Y. Acad. Sci. 504, 214 (1987).

    Article  ADS  Google Scholar 

  91. M. Malik and A.J. Camm (eds.). Heart Rate Variability (Futura, Armonk, 1995).

    Google Scholar 

  92. J.M. Hausdorff et al., J. Appl. Physiol. 80, 1448 (1996).

    Google Scholar 

  93. P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z. Struzik, and H.E. Stanley, Nature 399, 461 (1999).

    Article  ADS  Google Scholar 

  94. I. Daubechies, Ten Lectures on Wavelets (S.I.A.M., Philadelphia, 1992).

    Book  MATH  Google Scholar 

  95. J.F. Muzy, E. Bacry, and A. Arneodo, Int. J. Bifurcat. Chaos 4, 245 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  96. C.-K. Peng et al., J. Electrocardiol. 28, 59 (1996).

    Article  Google Scholar 

  97. P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, H.E. Stanley, and Z.R. Struzik, Chaos 11, 641 (2001).

    Article  ADS  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivanov, P.C., Goldberger, A.L., Stanley, H.E. (2002). Fractal and Multifractal Approaches in Physiology. In: The Science of Disasters. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56257-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56257-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62531-2

  • Online ISBN: 978-3-642-56257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics