Crowd Disasters and Simulation of Panic Situations

  • Dirk Helbing
  • Illés J. Farkas
  • Tamás Vicsek

Abstract

One of the most tragic collective behaviors is a panic stampede [11.1–11.9], as it often leads to the death of people who are either crushed or trampled down by others. While this behavior is comprehensible in life-threatening situations like fires in crowded buildings [11.10, 11.11], it is hardly understood in cases of a rush for good seats at a pop concert [11.12], or without any obvious reasons. Unfortunately, the frequency of such disasters is increasing [11.12], as growing population densities combined with easier transportation lead to greater mass events like pop concerts, sporting events, and demonstrations. Nevertheless, systematic studies of panics [11.8] are rare [11.5, 11.10, 11.12]. Moreover, there is a scarcity of quantitative theories capable of predicting the dynamics of human crowds [11.13–11.15]. Here we show that simulations of pedestrian behavior can give valuable insights into the mechanisms and preconditions of panic, jamming, and the observed ‘faster-is-slower effect’. We also provide clues to practical ways of minimizing the related tragedies. Furthermore, we identify an optimal strategy for collective problem solving in crisis situations, corresponding to a suitable mixture of individuahstic and herding behavior.

Keywords

Transportation TUrkey Smoke Egypt Volatility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 11.1
    G. LeBon, The Crowd (Viking, New York, 1960).Google Scholar
  2. 11.2
    B.D. Jacobs and P. ’t Hart, in Hazard Management and Emergency Planning, edited by D.J. Parker and J.W. Handmer (James and James Science, London, 1992), Chap. 10.Google Scholar
  3. 11.3
    N.J. Smelser, Theory of Collective Behavior (The Free Press, New York, 1963).Google Scholar
  4. 11.4
    R. Brown, Social Psychology (The Free Press, New York, 1965).Google Scholar
  5. 11.5
    D.L. Miller, Introduction to Collective Behavior (Wadsworth, Belmont, CA, 1985), Fig. 3.3 and Chap. 9.Google Scholar
  6. 11.6
    J.S. Coleman, Foundations of Social Theory (Belkamp, Cambridge, MA, 1990), Chaps. 9 and 33.Google Scholar
  7. 11.7
    R.H. Turner and L.M. Killian, Collective Behavior, 3rd edn. (Prentice Hall, Englewood Cliffs, 1987).Google Scholar
  8. 11.8
    A. Mintz, J. Abnorm. Norm. Soc. Psychol. 46, 150 (1951).Google Scholar
  9. 11.9
    E. Quarantelli, Sociol. and Soc. Res. 41, 187 (1957).Google Scholar
  10. 11.10
    J.P. Keating, Fire J., 57+147 (May/1982).Google Scholar
  11. 11.11
    D. Elliott and D. Smith, Ind. Env. Crisis Q. 7(3), 205 (1993).Google Scholar
  12. 11.12
    N.R. Johnson, Soc. Probl. 34(4), 362 (1987).CrossRefGoogle Scholar
  13. 11.13
    K.H. Drager, G. Løvås, J. Wiklund, H. Soma, D. Duong, A. Violas, and V. Lanèrès, in Proc, 1992 Emergency Manage. Eng. Conf. (Society for Computer Simulation, Orlando, Florida, 1992), p. 101.Google Scholar
  14. 11.14
    M. Ebihara, A. Ohtsuki, and H. Iwaki, Microcomput. Civ. Eng. 7, 63 (1992).CrossRefGoogle Scholar
  15. 11.15
    O.K. Still, Fire 84, 40 (1993).Google Scholar
  16. 11.16
    J.L. Bryan, Fire J., 27+86 (Nov./1985).Google Scholar
  17. 11.17
    R. Axelrod and D. Dion, Science 242, 1385 (1988).ADSCrossRefGoogle Scholar
  18. 11.18
    N.S. Glance and B.A. Huberman, Sci. Am. 270, 76 (1994).CrossRefGoogle Scholar
  19. 11.19
    W. Weidlich, Phys. Rep. 204, 1 (1991).MathSciNetADSCrossRefGoogle Scholar
  20. 11.20
    D. Helbing, Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes (Kluwer, Dordrecht, 1995).MATHGoogle Scholar
  21. 11.21
    W. Weidlich, Sociodynamics (Harwood, Amsterdam, 2000).MATHGoogle Scholar
  22. 11.22
    D. Helbing, H.J. Herrmann, M. Schreckenberg, and D.E. Wolf (eds.). Traffic and Granular Flow ′99: Social, Traffic, and Granular Dynamics (Springer, Berlin, 2000).MATHGoogle Scholar
  23. 11.23
    F. Schweitzer and D. Helbing (eds.). Economic Dynamics from the Physics Point of View, Physica A 287, 339 (2000).Google Scholar
  24. 11.24
    R.A. Smith and J.F. Dickie (eds.), Engineering for Crowd Safety (Elsevier, Amsterdam, 1993).Google Scholar
  25. 11.25
    H.H. Kelley, J.C. Condry Jr., A.E. Dahlke, and A.H. Hill, J. Exp. Soc. Psychol. 1, 20 (1965).CrossRefGoogle Scholar
  26. 11.26
    D. Canter (ed.). Fires and Human Behaviour (David Fulton, London, 1990).Google Scholar
  27. 11.27
    W.M. Predtetschenski and A.I. Milinski, Personenströme in Gebäuden, Berechnungsmethoden für die Projektierung (Rudolf Müller, Köln-Braunsfeld, 1971).Google Scholar
  28. 11.28
    U. Weidmann, Transporttechnik der Fußgänger (Institut für Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau (IVT), ETH Zürich, 1993).Google Scholar
  29. 11.29
    D. Helbing, Behav. Sci. 36, 298 (1991).CrossRefGoogle Scholar
  30. 11.30
    D. Helbing, P. Molnár, and F. Schweitzer, in Evolution of Natural Structures (Sonderforschungsber. 230, Stuttgart, 1994), p. 229Google Scholar
  31. 11.31
    D. Helbing and P. Molnár, Phys. Rev. E 51, 4282 (1995).ADSCrossRefGoogle Scholar
  32. 11.32
    D. Helbing, in Traffic and Granular Flow, edited by D.E. Wolf, M. Schreckenberg, and A. Bachem (World Scientific, Singapore, 1996), p. 87.Google Scholar
  33. 11.33
    P. Molnár, Modellierung und Simulation der Dynamik von Fußgängerströmen (Shaker, Aachen, 1996).Google Scholar
  34. 11.34
    P. Molnár, in Social Science Microsimulation, edited by J. Doran, N. Gilbert, U. Mueller, and K. Troitzsch (Springer, Berlin, 1996).Google Scholar
  35. 11.35
    D. Helbing and P. Molnár, in Self-Organization of Complex Structures: From Individual to Collective Dynamics, edited by F. Schweitzer (Gordon and Breach, London, 1997), p. 569.Google Scholar
  36. 11.36
    D. Helbing, Verkehrsdynamik (Springer, Berlin, 1997).MATHCrossRefGoogle Scholar
  37. 11.37
    D. Helbing, P. Molnár, I. Parkas, and K. Bolay, Env. Planning B 28, 361 (2001).CrossRefGoogle Scholar
  38. 11.38
    D. Helbing, Rev. Mod. Phys. 73(4), 1067 (2001). submitted to Rev. Mod. Phys. (2000).ADSCrossRefGoogle Scholar
  39. 11.39
    D. Helbing, I. Parkas, and T. Vicsek, Phys. Rev. Lett. 84, 1240 (2000).ADSCrossRefGoogle Scholar
  40. 11.40
    D. Helbing, I. Parkas, and T. Vicsek, Nature 407, 487 (2000).ADSCrossRefGoogle Scholar
  41. 11.41
    G.H. Ristow and H. J. Herrmann, Phys. Rev. E 50, R5 (1994).ADSCrossRefGoogle Scholar
  42. 11.42
    D.E. Wolf and P. Grassberger (eds.). Friction, Arching, Contact Dynamics (World Scientific, Singapore, 1997).Google Scholar
  43. 11.43
    D. Helbing, Phys. Bl. 57, 27 (2001).Google Scholar
  44. 11.44
    D. Helbing and T. Vicsek, New J. Phys. 1, 13.1 (1999).CrossRefGoogle Scholar
  45. 11.45
    D. Helbing and T. Platkowski, Int. J. Chaos Theory Appl. 5, 25 (2000).Google Scholar
  46. 11.46
    J. Gallas, H.J. Herrmann, and S. Sokołowski, Phys. Rev. Lett. 69, 1371 (1992).ADSCrossRefGoogle Scholar
  47. 11.47
    P.B. Umbanhowar, F. Melo, and H.L. Swinney, Nature 382, 793 (1996).ADSCrossRefGoogle Scholar
  48. 11.48
    A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987).MathSciNetADSCrossRefGoogle Scholar
  49. 11.49
    M. Muramatsu, T. Irie, and T. Nagatani, Physica A 267, 487 (1999).CrossRefGoogle Scholar
  50. 11.50
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).ADSCrossRefGoogle Scholar
  51. 11.51
    A. Czirók, M. Vicsek, and T. Vicsek, Physica A 264, 299 (1999).CrossRefGoogle Scholar
  52. 11.52
    N.H. Anderson, J. Soc. Psychol. 55, 67 (1961).CrossRefGoogle Scholar
  53. 11.53
    H.H. Kelley and J.W. Thibaut, in The Handbook of Social Psychology, Vol. 4, edited by G. Lindzey and E. Aronson (Addison-Wesley, Reading, 1969).Google Scholar
  54. 11.54
    P.R. Laughlin, N.L. Kerr, J.H. Davis, H.M. Halff, and K.A. Marciniak, J. Personality Soc. Psychol. 31, 522 (1975).CrossRefGoogle Scholar
  55. 11.55
    L. Mann, T. Nagel, and P. Dowling, Sociometry 39(3), 223 (1976).CrossRefGoogle Scholar
  56. 11.56
    J.-P. Bouchaud, A. Matacz, and M. Potters, The leverage effect in financial markets: retarded volatility and market panic (2001); [available from arXiv.org/abs/cond-niat/0101120v2].Google Scholar
  57. 11.57
    R.N. Mantegna and E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999).Google Scholar
  58. 11.58
    J.-P. Bouchaud and M. Potters, Theory of Financial Risk: From Statistical Physics to Risk Management (Cambridge University Press, Cambridge, England, 2000).Google Scholar
  59. 11.59
    H. Levy, M. Levy, and S. Solomon, Microscopic Simulation of Financial Markets (Academic, San Diego, 2000).Google Scholar
  60. 11.60
    B.B. Mandelbrot, Fractals and Scaling in Finance: Discontinuity, Concentration, Risk (Springer, New York, 1997).MATHGoogle Scholar
  61. 11.61
    M. Youssefmir, B.A. Huberman, and T. Hogg, Comp. Econ. 12, 97 (1998).MATHCrossRefGoogle Scholar
  62. 11.62
    J.D. Farmer, Market force, ecology, and evolution, submitted to J. Econ. Behav. Org. (2000); [available from arXiv.org/abs/adap-org/9812005].Google Scholar
  63. 11.63
    T. Lux and M. Marchesi, Nature 397, 498 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Dirk Helbing
  • Illés J. Farkas
  • Tamás Vicsek

There are no affiliations available

Personalised recommendations