Skip to main content

Unstable Periodic Orbits and Stochastic Synchronization in Sensory Biology

  • Chapter
The Science of Disasters

Abstract

We discuss here two new methods for extracting low-dimensional dynamical objects from dynamically noisy, nonstationary datasets. The analysis and detection algorithms assess the presence or absence of such objects and return a determined statistical confidence level. The first objects we discuss are stable and unstable periodic orbits and bifurcations between these states. Second, the statistical process of synchronization between stable orbits in the presence of noise is demonstrated. Several examples based on experimental data from sensory biology and one example from the rat brain hypothalamus are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archimedes, ‘Planes in Equilibrium’ in Method, currently in reconstruction; Rev: Netz, Phys. Today 53(6), 32 (2000).

    Article  Google Scholar 

  2. D. Ruelle, Phys. Today 47, 24 (1994).

    Article  Google Scholar 

  3. A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano, Physica D 16, 285 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  5. D.T. Kaplan, Physica D 73, 38 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. L.F. Olsen and W.M. Schaffer, Science 249, 499 (1990).

    Article  ADS  Google Scholar 

  7. G. Sugihara and R.M. May, Nature 344, 734 (1990).

    Article  ADS  Google Scholar 

  8. S.H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, 1994).

    Google Scholar 

  9. X. Pei, K. Dolan, and Y.-C. Lai, Chaos 8, 853 (1998).

    Article  ADS  MATH  Google Scholar 

  10. K.T. Dolan, Analysis of biological and physical systems using nonlinear topological methods, (Ph.D. Dissertation, University of Missouri, Rolla, 2000).

    Google Scholar 

  11. L. Omberg, K. Dolan, A. Neiman, and F. Moss, Phys. Rev. E 61, 4848 (2000).

    Article  ADS  Google Scholar 

  12. M.T. Huber, J.-C. Krieg, H.A. Braun, X. Pei, A. Neiman, and F. Moss, Neurocomputing 32/33, 823 (2000).

    Article  Google Scholar 

  13. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J.D. Farmer, Physica D 58, 77 (1992).

    Article  ADS  MATH  Google Scholar 

  14. T. Schreiber, Phys. Rev. Lett. 80, 2105 (1998).

    Article  ADS  Google Scholar 

  15. K. Dolan, A. Witt, M. Spano, A. Neiman, and F. Moss, Phys. Rev. E 59, 5235 (1999).

    Article  ADS  Google Scholar 

  16. P.R. Bevington, Data Reduction and Error Analysis (McGraw-Hill, New York, 1969), p. 48.

    Google Scholar 

  17. P. Cvitanovic, Phys. Rev. Lett. 61, 2729 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Cvitanovic, Physica D 51, 138 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. R. Artuso, E. Aurell, and P. Cvitanovic, Nonlinearity 3, 361 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Artuso, E. Aurell, and P. Cvitanovic, Nonlinearity 3, 325 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Badii, E. Brun, M. Finardi, L. Flepp, R. Holzner, J. Parisi, C. Reyl, and J. Simonet, Rev. Mod. Phys. 66, 1389 (1994).

    Article  ADS  Google Scholar 

  22. E.R. Hunt, Phys. Rev. Lett. 67, 1953 (1991).

    Article  ADS  Google Scholar 

  23. E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. W.L. Ditto, S.N. Rauseo, and M.L. Spano, Phys. Rev. Lett. 65, 3211 (1990).

    Article  ADS  Google Scholar 

  25. A. Garfinkel, M.L. Spano, W.L. Ditto, and J.N. Weiss, Science 257, 1230 (1992).

    Article  ADS  Google Scholar 

  26. V. Petrov, V. Caspar, J. Masere, and K. Showalter, Nature 361, 240 (1993).

    Article  ADS  Google Scholar 

  27. R.W. Rolhns, P. Parmananda, and P. Sherard, Phys. Rev. E 47, R780 (1993).

    Article  ADS  Google Scholar 

  28. R. Roy, T.W. Murphy, T.D. Maier, Z. Cillis, and E.R. Hunt, Phys. Rev. Lett. 68, 1259 (1992).

    Article  ADS  Google Scholar 

  29. S.J. Schiff, K. Jerger, D. Duong, T. Chang, M.L. Spano, and W.L. Ditto, Nature 370, 615 (1994).

    Article  ADS  Google Scholar 

  30. D.J. Christini and J.J. Collins, Phys. Rev. Lett. 75, 2782 (1995).

    Article  ADS  Google Scholar 

  31. D. Pierson and F. Moss, Phys. Rev. Lett. 75, 2124 (1995).

    Article  ADS  Google Scholar 

  32. X. Pei and F. Moss, Nature 379, 618 (1996).

    Article  ADS  Google Scholar 

  33. X. Pei and F. Moss, Int. J. Neural Syst. 7, 429 (1996).

    Article  Google Scholar 

  34. L. Menendez de la Prida, N. StoUenwerk, and J.V. Sanchez-Andres, Physica D 110, 323 (1997).

    Article  ADS  MATH  Google Scholar 

  35. K. Narayanan, R.B. Govindan, and M.S. Gopinathan, Phys. Rev. E 57, 4594 (1998).

    Article  ADS  Google Scholar 

  36. M. Le Van Quyen, J. Martinerie, C. Adam, and F.J. Varela, Phys. Rev. E 56, 3401 (1997).

    Article  ADS  Google Scholar 

  37. H.A. Braun, K. Schäfer, K. Voigt, R. Peters, F. Bretschneider, X. Pei, L. Wilkens, and F. Moss, J. Comp. Neurosci. 4, 335 (1997).

    Article  MATH  Google Scholar 

  38. H.A. Braun, M. Dewald, K. Schäfer, K. Voigt, X. Pei, K. Dolan, and F. Moss, J. Comp. Neurosci. 7, 17 (1999).

    Article  MATH  Google Scholar 

  39. H.A. Braun, M. Dewald, K. Voigt, M. Huber, X. Pei, and F. Moss, Neurocomputing 26/27, 79 (1999).

    Article  Google Scholar 

  40. H.A. Braun, M.T. Huber, M. Dewald, K. Schäfer, and K. Voigt, Int. J. Bifurcat. Chaos 8, 881 (1998).

    Article  MATH  Google Scholar 

  41. H. A. Braun, M. T. Huber, N. Anthes, K. Voigt, A. Neiman, X. Pei, and F. Moss, Neurocomputing 32–33, 51 (2000).

    Article  Google Scholar 

  42. H.A. Braun, M.T. Huber, N. Anthes, K. Voigt, A. Neiman, X. Pei, and F. Moss, Biosystems 62, 99 (2001), [Note, for the equations and parameter values please see the URL: http://neurodyn.uinsl.edu/hodgkin-huxley.html.]

    Article  Google Scholar 

  43. R. Gilmore, X. Pei, and F. Moss, Chaos 9, 812 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. U. Feudel, A. Neiman, X. Pei, W. Wojtenek, H. Braun, M. Huber, and F. Moss, Chaos 10, 231 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. W. Braun, B. Eckhardt, H.A. Braun, and M. Huber, Phys. Rev. E 62, 6352 (2000).

    Article  ADS  Google Scholar 

  46. C. Huygens, Horoloqium Oscilatorium (Parisiis, France, 1673).

    Google Scholar 

  47. L. Glass and M.C. Mackey, From Clocks to Chaos. The Rhythms if Life (Princeton University Press, Princeton, 1988).

    Google Scholar 

  48. A.T. Winfree, The Geometry of Biological Time (Springer, New York, 1980).

    MATH  Google Scholar 

  49. C. Schäfer, M.G. Rosenblum, H. Abel, and J. Kurths, Phys. Rev. E 60, 857 (1998).

    Article  ADS  Google Scholar 

  50. C. Schäfer, M.G. Rosenblum, J. Kurths, and H. Abel, Nature 392, 239 (1998).

    Article  ADS  Google Scholar 

  51. P. Tass, M. Rosenblum, J. Weule, J. Kurths, A. Pickovsky, J. Volkmann, A. Schnitzler, and J.-H. Freund, Phys. Rev. Lett. 81, 3291 (1998).

    Article  ADS  Google Scholar 

  52. R.L. Stratonovich, Topics in the Theory of Random Noise (Gordon and Breach, New York, 1967).

    MATH  Google Scholar 

  53. A. Neiman, Phys. Rev. E 49, 3484 (1994).

    Article  ADS  Google Scholar 

  54. A. Neiman, L. Schimansky-Geier, A. Cornell-Bell, and F. Moss, Phys. Rev. Lett. 83 4896 (1999).

    Article  ADS  Google Scholar 

  55. A. Neiman, L. Schimansky-Geier, F. Moss, B. Shulgin, and J.J. Collins, Phys. Rev. E 60, 284 (1999).

    Article  ADS  Google Scholar 

  56. A. Neiman, A. Silchenko, V. Anishchenko, and L. Schimansky-Geier, Phys. Rev. E 58, 7118 (1998).

    Article  ADS  Google Scholar 

  57. B. Shulgin, A. Neiman, and V. Anishchenko, Phys. Rev. Lett. 75, 4157 (1995).

    Article  ADS  Google Scholar 

  58. L.M. Pecora and T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  59. A.S. Pikovsky, M.G. Rosenblum, G.V. Osipov, and J. Kurths, Physica D 104, 219 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  60. M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).

    Article  ADS  Google Scholar 

  61. H.A. Braun, H. Wissing, K. Schäfer, and M. Hirsch, Nature 367, 270 (1994).

    Article  ADS  Google Scholar 

  62. L.A. Wilkens, D.F. Russell, X. Pei, and C. Gurgens, Proc. R. Soc. B 264, 1723 (1997).

    Article  ADS  Google Scholar 

  63. D. Russell, L. Wilkens, and F. Moss, Nature 402, 219 (1999).

    Google Scholar 

  64. P. Greenwood, L. Ward, D. Russell, A. Neiman, and F. Moss, Phys. Rev. Lett. 84, 4773 (2000).

    Article  ADS  Google Scholar 

  65. J.A. Freund, J. Kienert, L. Schimansky-Geier, B. Beisner, A. Neiman, D. Russell, T. Yakusheva, and F. Moss, Phys. Rev. E. 63, 31910 (2001).

    Article  ADS  Google Scholar 

  66. A. Neiman, X. Pei, D. Russell, W. Wojtenek, L. Wilkens, F. Moss, H. A. Braun, M. T. Huber, and K. Voigt, Phys. Rev. Lett. 82, 660 (1999).

    Article  ADS  Google Scholar 

  67. A.B. Neiman, D.F. Russell, X. Pei, W. Wojtenek, J. Twitty, E. Simonotto, B.A. Wettring, E. Wagner, L.A. Wilkens, and F. Moss, Int. J. Bifurcat. Chaos 10, 2499 (2000).

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moss, F.E., Braun, H.A. (2002). Unstable Periodic Orbits and Stochastic Synchronization in Sensory Biology. In: The Science of Disasters. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56257-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56257-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62531-2

  • Online ISBN: 978-3-642-56257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics