Skip to main content

Arteries of the Extremities

  • Chapter
Magnetic Resonance Angiography

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 367 Accesses

Abstract

Although the prevalence peripheral arterial occlusive disease (PAOD) of the lower extremities is a widespread, the clinical importance of this disease is still underestimated compared with other atherosclerotic manifestations such as coronary heart disease or cerebrovascular disease. In the United States, the treatment of PAOD accounts for more than 100,000 surgical procedures annually (Rutkow and Ernst 1986; Rofsky and Adelman 2000). PAOD may cause a wide range of symptoms with substantial morbidity, including claudication, rest pain, tissue loss, and gangrene. Up until 1992, prevalence and incidence studies mostly considered only the symptomatic forms of PAOD (Dagenais et al. 1991; Fowkes 1991). Two research groups, led by Vierodt in Tubingen and Jaquet in Paris (Vierordt 1855), found an angiographically proven high percentage of oligosymptomatic patients without claudication and with well-compensated stenoses or occlusions due to an immobile lifestyle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelmann MA, Jacobowitz GR (1998) Body MR angiography: a surgeon’perspective. Magn Reson Imaging Clin North Am 6:397–416

    Google Scholar 

  • Amanuma M, Hirata H, Tanaka J, et al (1999) [Table-moving contrast-enhanced MR angiography of abdominal aortic aneurysm]. Nippon Igaku Hoshasen Gakkai Zasshi 59:760–764

    PubMed  CAS  Google Scholar 

  • Andros G (1995) Bypass grafts to the ankle and foot: a personal perspective. Surg Clin North Am 75:715–729

    PubMed  CAS  Google Scholar 

  • Andros G (1995) Bypass grafts to the ankle and foot: expanded role of arterial reconstruction. Surg Clin North Am 75:715–729

    PubMed  CAS  Google Scholar 

  • Armstrong DG, Lavery LA (1998) Diabetic foot ulcers: prevention, diagnosis and classification. Am Fam Physician 15:1325–1332

    Google Scholar 

  • Ascer E, Veith FJ, Flores SA (1986) Infrapopliteal bypasses to heavily calcified rock-like arteries: management and results. Am J Surg 152:220–223

    PubMed  CAS  Google Scholar 

  • Barras JP, da Silva A, Widmer MT, Zemp E, Jäger K, Widmer LK (1989) Evolution de l’artériopathie précocement décelée -mortalité et causes de décès. Vasa Suppl 27:265

    Google Scholar 

  • Baum RA, Rutter CM, Sunshine JH, et al (1995) Multicenter trial to evaluate vascular magnetic resonance angiography of the lower extremity. American College of Radiology Rapid Technology Assessment Group. JAMA 274:875–880

    PubMed  CAS  Google Scholar 

  • Boos M, Böttcher U, Brechteisbauer D, Goyen M, Heuser L (1995) Clinical Potentials of phase contrast MRA, magnitude contrast MRA and high resolution MRI before and after PTA. Proc Soc Magn Reson Eur Soc Magn Reson Med Biol 1:541

    Google Scholar 

  • Boos M, Scheffler K, Jacob A, Böttcher U, Bongartz G (1997) Development of a suitable clinical MRA protocol for planning and follow-up of PTA using 2D phase contrast, ECG gated 2D TOF and contrast enhanced techniques. In: Oud-kerk M, Edelman R (eds) High-power gradient MR-Imaging. Advances in MRI II. Blackwell Science, Vienna, pp 365–371

    Google Scholar 

  • Boos M, Lentschig M, Scheffler K, Bongartz GM, Steinbrich W (1998) Contrast-enhanced magnetic resonance angiography of peripheral vessels. Different contrast agent applications and sequence strategies: a review. Invest Radiol 33:538–546

    PubMed  CAS  Google Scholar 

  • Cambria RP, Yucel EK, Brewster DC, et al (1993) The potential for lower extremity revascularization without contrast arteriography: experience with magnetic resonance angiography. J Vasc Surg 17:1050–1056; discussion 1056–1057

    PubMed  CAS  Google Scholar 

  • Carpenter JP, Owen RS, Baum RA, et al (1992) Magnetic resonance angiography of peripheral runoff vessels. J Vasc Surg 16:807–813; discussion 813–815

    PubMed  CAS  Google Scholar 

  • Carriero A, Gatta S, Baratto M, Marano R, Aulisa R, Bonomo L (1998) [Angiography compared to high resolution magnetic resonance and digital angiography in atherosclerosis of the iliac-femoral arteries]. Radiol Med (Torino) 95:165–169

    CAS  Google Scholar 

  • Cortell ED, Kaufman JA, Geller SC, Cambria RP, Rivitz SM, Waltman AC (1996) MR angiography of tibial runoff vessels: imaging with the head coil compared with conventional arteriography. AJR Am J Roentgenol 167:147–151

    PubMed  CAS  Google Scholar 

  • Criqui MH, Fronek A, Klauber MR, Barrettt-Connor E, Gabriel S (1985) The senisitivity, specificity, and predictive value of traditional clinical evaluation of peripheral arterial disease: results from noninvasive testing in a defined population. Circulation 71:516–522

    PubMed  CAS  Google Scholar 

  • Dagenais GR, Maurice S, Robitaille NM, Gingras S, Lupien PJ (1991) Intermittent claudication in Quebec men from 1974–1986: the Quebec cardiovascular study. Clin Invest Med 14:93–100

    PubMed  CAS  Google Scholar 

  • Dardik H, Ibrahim IM, Sussman B, et al (1981) Morphologic structure of the pedal arch and its relationship to patency of crural vascular reconstruction. Surg Gynecol Obstet 152:645–648

    PubMed  CAS  Google Scholar 

  • Da Silva A, Widmer A (1959–1978) Periphere arterielle Verschlusskrankheit: Frühdiagnose, Häufigkeit, Bedeutung, Verlauf. Beobachtungen bei 2630 Männern. In: Widmer LK, Stähelin HG, Nissen C, da Silva A (eds) Venen-Arterienkrankheiten, koronare Herzkrankheit bei Berufstätigen, Basler Studie I-III. Huber, Berne

    Google Scholar 

  • DeBakey ME, Lawrie GM, Glaeser DH (1985) Patterns of atherosclerosis and their surgical significance. Ann Surg 201:115–131

    Google Scholar 

  • Edelman RR (1992) Basic principles of magnetic resonance angiography. Cardiovasc Intervent Radiol 15:3–13

    PubMed  CAS  Google Scholar 

  • Foo TK, Saranathan M, Prince MR, Chenevert TL (1997) Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology 203:275–280

    PubMed  CAS  Google Scholar 

  • Fowkes FGR (1991) Epidemiology of peripheral vascular disease. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Glickerman DJ, Obregon RG, Schmiedl UP, et al (1996) Cardiac-gated MR angiography of the entire lower extremity: a prospective comparison with conventional angiography. AJR Am J Roentgenol 167:445–451

    PubMed  CAS  Google Scholar 

  • Hadley JR, Chapman BE, Roberts JA, et al (2000) A three-coil comparison for MR angiography. Magn Reson Imaging J 11:458–468

    CAS  Google Scholar 

  • Hany TF, Leung DA, Pfammatter T, Debatin JF (1998) Contrast-enhanced magnetic resonance angiography of the renal arteries. Original investigation. Invest Radiol 33:653–659

    PubMed  CAS  Google Scholar 

  • Haustein J, Niendorf HP, Krestin G, et al (1992) Renal tolerance of gadolinium-DTPA/dimeglumine in patients with chronic renal failure. Invest Radiol 27:153–156

    PubMed  CAS  Google Scholar 

  • Hayashi H (1999) Composition of vascular tree using moving-table MR angiography: development and preliminary clinical experience with a semi-automated program combining stacks of MR angiographic images [in process citation]. Nippon Igaku Hoshasen Gakkai Zasshi 59:409–411

    PubMed  CAS  Google Scholar 

  • Henerici M, Rautenberg W, Trockel U, Kladetzky RG (1985) Spontaneous progression and regression of small carotid vessels. Lancet 1:1415–1419

    Google Scholar 

  • Henry M, Amor M, Ethevenot G, et al (1995) Palmaz stent placement in iliac and femoropopliteal arteries: primary and secondary patency in 310 patients with 2–4-year follow-up. Radiology 197:167–174

    PubMed  CAS  Google Scholar 

  • Hertz SM, Baum RA, Owen RS, Holland GA, Logan DR, Carpenter JP (1993) Comparison of magnetic resonance angiography and contrast arteriography in peripheral arterial stenosis. Am J Surg 166:112–116; discussion 116

    PubMed  CAS  Google Scholar 

  • Ho VB (1999) Automated bolus chase peripheral MR angiography: initial practical experiences and future directions of thiswork-in-progress [in process citation]. J Magn Reson Imaging 10:376–388

    PubMed  CAS  Google Scholar 

  • Ho VB, Foo TK (1998) Optimization of gadolinium-enhanced magnetic resonance angiography using an automated bolus-detection algorithm (MR SmartPrep). Original investigation. Invest Radiol 33:515–523

    CAS  Google Scholar 

  • Ho KY, de Haan MW, Oei TK, et al (1997) MR angiography of the iliac and upper femoral arteries using four different inflow techniques. AJR Am J Roentgenol 169:45–53

    PubMed  CAS  Google Scholar 

  • Ho KY, Leiner T, de Haan MW, Kessels AG, Kitslaar PJ, van Engelshoven JM (1998) Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology 206:683–692

    PubMed  CAS  Google Scholar 

  • Hoch JR, Tullis MJ, Kennell TW, McDermott J, Acher CW, Turnipseed WD (1996) Use of magnetic resonance angiography for the preoperative evaluation of patients with infrain-guinal arterial occlusive disease. J Vasc Surg 23:729–800; discussion 801

    Google Scholar 

  • Hoch JR, Kennell TW, Hollister MS, et al (1999) Comparison of treatment plans for lower extremity arterial occlusive disease made with electrocardiography-triggered two-dimensional time-of-flight magnetic resonance angiography and digital subtraction angiography. Am J Surg 178:166–172

    PubMed  CAS  Google Scholar 

  • Huber TS, Back MR, Ballinger RJ, et al (1997) Utility of magnetic resonance arteriography for distal lower extremity revascularization. J Vasc Surg 26:415–423; discussion 423–424

    PubMed  CAS  Google Scholar 

  • Humphrey LL, Palumbo PJ, Butters MA, et al (1994) The contribution on non-insulin-dependent diabetes to lower-extremity amputation in the community. Arch Intern Med 154:885–892

    PubMed  CAS  Google Scholar 

  • Imarato AM, Kim GE, Davidson T, Crowley JG (1975) Intermittent claudication: its naturial course. Surgery 154:795–799

    Google Scholar 

  • Jacob AL, Stock KW, Proske M, Steinbrich W (1996) Lower extremity angiography: improved image quality and outflow vessel detection with bilaterally antegrade selective digital subtraction angiography. A blinded prospective intraindividual comparison with aortic flush digital subtraction angiography. Invest Radiol 31:184–193

    PubMed  CAS  Google Scholar 

  • Janka R, Fellner F, Requardt M, et al (1999) Contrast enhanced MRA of peripheral arteries with the automatic“floating table” Rontgenpraxis 52:15–18

    PubMed  CAS  Google Scholar 

  • Jonason T, Ringqvist I (1985) Factors of prognostic importance for subsequent rest pain in patients with intermittent claudication. Acta Med Scand 218:27–33

    PubMed  CAS  Google Scholar 

  • Jones L, Pressdee DJ, Lamont PM, Baird RN, Murphy KP (1998) A phase contrast (PC) rephase/dephase sequence of magnetic resonance angiography (MRA): a new technique for imaging distal run-off in the pre-operative evaluation of peripheral vascular disease. Clin Radiol 53:333–337

    PubMed  CAS  Google Scholar 

  • Kaufman JL, Whittemore AD, Couch NP, Mannick JA (1982) The fate of bypass grafts to an isolated popliteal artery segment. Surgery 92:1027–1031

    PubMed  CAS  Google Scholar 

  • Kojima KY, Szumowski J, Sheley RC, Quinn SF (1995) Lower extremities: MR angiography with a unilateral telescopic phased- array coil. Radiology 196:871–875

    PubMed  CAS  Google Scholar 

  • Kolb M, Guhl L, Arlart IP (1997) [Magnetic resonance tomography and magnetic resonance angiography in diagnosis of complicated popliteal artery aneurysm]. Radiologe 37:145–151

    PubMed  CAS  Google Scholar 

  • Kreitner KF, Kalden P, Neufang A, et al (2000) Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced three-dimensional MR Angiography with conventional digital subtraction angiography. AJR Am J Roentgenol 174:171–179

    PubMed  CAS  Google Scholar 

  • Lee HM, Wang Y (1998) Dynamic k-space filling for bolus chase 3D MR digital subtraction angiography. Magn Reson Med 40:99–104

    PubMed  CAS  Google Scholar 

  • Lee HM, Wang Y, Sostman HD, et al (1998) Distal lower extremity arteries: evaluation with two-dimensional MR digital subtraction angiography. Radiology 207:505–512

    PubMed  CAS  Google Scholar 

  • Lenhart M, Djavidani B, Volk M, et al (1999) [Contrast medium-enhanced MR angiography of the pelvic and leg vessels with an automated table-feed technique]. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 171:442–449

    PubMed  CAS  Google Scholar 

  • Leung DA, Pelkonen P, Hany TF, Zimmermann G, Pfammatter T, Debatin JF (1998) Value of image subtraction in 3D gadolinium-enhanced MR angiography of the renal arteries. J Magn Reson Imaging 8:598–602

    PubMed  CAS  Google Scholar 

  • LoGerfo FW, Gibbons GW, Pomposelli FB, et al (1992) Trends in care of diabetic foot: expanded role of arterial reconies. ies. Arch Surg 127:617–620

    Google Scholar 

  • Long AL, Sapoval MR, Beyssen BM, et al (1995) Strecker stent implantation in iliac arteries: patency and predictive factors for long-term success. Radiology 194:739–744

    PubMed  CAS  Google Scholar 

  • Maki JH, Prince MR, Londy FJ, Chenevert TL (1996) The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging 6:642–651

    PubMed  CAS  Google Scholar 

  • Maki JH, Prince MR, Chenevert TC (1998a) Optimizing three-dimensional gadolinium-enhanced magnetic resonance angiography. Invest Radiol 33:528–537

    PubMed  CAS  Google Scholar 

  • Maki JH, Chenevert TL, Prince MR (1998b) Contrast-enhanced MR angiography. Abdom Imaging 23:469–484

    PubMed  CAS  Google Scholar 

  • Martin EC, Katzen BT, F. BJ, et al (1995) Multicenter trial of the wallstent in the iliac and femoral arteries. J Vasc Interv Radiol 6:843–849

    PubMed  CAS  Google Scholar 

  • McDermott VG, Meakem TJ, Carpenter JP, et al (1995) Magnetic resonance angiography of the distal lower extremity. Clin Radiol 50:741–6

    PubMed  CAS  Google Scholar 

  • McPhail NV, Fratesi SJ, Barber GG, Scobie TK (1983) Management of acute thromboembolic limb ischemia. Surgery 93:381–385

    PubMed  CAS  Google Scholar 

  • Meaney JF, Ridgway JP, Chakraverty S, et al (1999) Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology 211:59–67

    PubMed  CAS  Google Scholar 

  • Murphy TP, Khwaja AA, Webb MS (1998) Aortoiliac stent placement in patients treated for intermittent claudication. J Vasc Interv Radiol 9:421–428

    PubMed  CAS  Google Scholar 

  • Nelemans PJ, Leiner T, Henrica de Vet CW, Joseph van MA (2000) Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology 217:105–114

    PubMed  CAS  Google Scholar 

  • Nelson KL, Gifford LM, Lauber-Huber C, Gross CA, Lasser TA (1995) Clinical safety of gadopentetate dimeglumine. Radiology 196:439–443

    PubMed  CAS  Google Scholar 

  • Nissen C, Schweizer W, Burkart F, Renngli I (1981) Koronare Herzkrankheit. In: Widmer LK, Stähelin HG, Nissen C, da Silva A (eds) Basler Studie. Huber, Berne

    Google Scholar 

  • Owen RS, Carpenter JP, Baum RA, Perloff LJ, Cope C (1992) Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med 326:1577–1581

    PubMed  CAS  Google Scholar 

  • Owen RS, Baum RA, Carpenter JP, Holland GA, Cope C (1993) Symptomatic peripheral vascular disease: selection of imaging parameters and clinical evaluation with MR angiography [see comments]. Radiology 187:627–635

    PubMed  CAS  Google Scholar 

  • Peabody CN, Kannel WB, McNamara PM (1974) Intermittent claudication: surgical significance. Arch Surg 109:693–697

    PubMed  CAS  Google Scholar 

  • Pentecost MJ, Criqui MH, Dorros G, et al (1994) Guidelines for peripheral percutaneous transluminal angioplasty of the abdominal aorta and lower extremity vessels: a statement for health professional from a special writing group of the Councils on Cardiovascular Radiology, Arterosclerosis, Cardio-Thoracic and Vascular Surgery, Clinical Cardiology, and Epidemiology and Prevention, the American Heart Association. Circulation 89:511–531

    PubMed  CAS  Google Scholar 

  • Pomposelli FB, Marcaccio EJ, Gibbons GW, et al (1995) Dor-salis pedis arterial bypass: durable limb salvage for foot ischemia in patients with diabetes mellitus. J Vasc Surg 21:375–384

    PubMed  Google Scholar 

  • Poon E, Yucel EK, Pagan-Marin H, Kayne H (1997) Iliac artery stenosis measurements: comparison of two-dimensional time-of-flight and three-dimensional dynamic gadolinium-enhanced MR angiography. AJR Am J Roentgenol 169:1139–1144

    PubMed  CAS  Google Scholar 

  • Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    PubMed  CAS  Google Scholar 

  • Prince MR (1998a) Renal MR angiography: a comprehensive approach. J Magn Reson Imaging 8:511–516

    PubMed  CAS  Google Scholar 

  • Prince MR (1998b) Contrast-enhanced MR angiography: theory and optimization. Magn Reson Imaging Clin North Am 6:257–267

    CAS  Google Scholar 

  • Prince MR, Arnoldus C, Frisoli JK (1996) Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging 6:162–166

    PubMed  CAS  Google Scholar 

  • Prince MR, Chenevert TL, Foo TK, Londy FJ, Ward JS, Maki JH (1997) Contrast-enhanced abdominal MR angiography: optimization of imaging delay time by automating the detection of contrast material arrival in the aorta. Radiology 203:109–114

    PubMed  CAS  Google Scholar 

  • Prince MR, Anzai Y, Neimatallah M, Dong Q, Rubin JM (1999) MRA contrast bolus timing with ultrasound bubbles. J Magn Reson Imaging 10:389–394

    PubMed  CAS  Google Scholar 

  • Quinn SF, Sheley RC, Szumowski J, Shimakawa A (1997) Evaluation of the iliac arteries: comparison of two-dimensional time of flight magnetic resonance angiography with cardiac compensated fast gradient recalled echo and contrast-enhanced three-dimensional time of flight magnetic resonance angiography. J Magn Reson Imaging 7:197–203

    PubMed  CAS  Google Scholar 

  • Reimer P, Wilhelm M, Lentschig M, et al (1997) [Phase-contrast MR angiography of the lower extremity. Comparison of methods and clinical application]. Radiologe 37:572–578

    PubMed  CAS  Google Scholar 

  • Reimer P, Wilhelm M, Lentschig M, et al (1998) [Combined use of ECK-triggered 2D-phase contrast MR angiography and 2D-time-of-flight MR angiography for planning and follow up before and after vascular intervention of pelvic and leg arteries]. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 168:243–249

    PubMed  CAS  Google Scholar 

  • Rodenwaldt J, Kopka L, Vosshenrich R, Fischer U, Grabbe E (2000) 3D MR angiography of the entire aorta: modified application of the body-phased array coil for a single-shot technique. Eur J Radiol 33:41–49

    PubMed  CAS  Google Scholar 

  • Rofsky NM, Adelman MA (2000) MR angiography in the evaluation of atherosclerotic peripheral vascular disease. Radiology 214:325–338

    PubMed  CAS  Google Scholar 

  • Rofsky NM, Johnson G, Adelman MA, Rosen RJ, Krinsky GA, Weinreb JC (1997) Peripheral vascular disease evaluated with reduced-dose gadolinium-enhanced MR angiography. Radiology 205:163–169

    PubMed  CAS  Google Scholar 

  • Rofsky NM, Morana G, Adelman MA, Lee VS, Krinsky GA (1999) Improved gadolinium-enhanced subtraction MR angiography of the femoropopliteal arteries: reintroduction of osseous anatomic landmarks. AJR Am J Roentgenol 173:1009–1011

    PubMed  CAS  Google Scholar 

  • Rutkow IM, Ernst CB (1986) An analysis of vascular surgical manpower requirements and vascular surgical rates in the United States. J Vasc Surg 3:74–83

    PubMed  CAS  Google Scholar 

  • Sameshima T, Futami S, Morita Y, et al (1999) Clinical usefulness of and problems with three-dimensional CT angiography for the evaluation of arteriosclerotic stenosis of the carotid artery: comparison with conventional angiography, MRA, and ultrasound sonography. Surg Neurol 51:301–308; discussion 308–309

    PubMed  CAS  Google Scholar 

  • Samson RH, Showalter DP, Yunis JP (1999) Isolated femoropopliteal bypass graft for limb salvage after failed tibial reconstruction: a viable alternative to amputation. J Vasrc Surg 29:409–412

    CAS  Google Scholar 

  • Snidow JJ, Aisen AM, Harris VJ, et al (1995) Iliac artery MR angiography: comparison of three-dimensional gadolinium-enhanced and two-dimensional time-of-flight techniques. Radiology 196:371–378

    PubMed  CAS  Google Scholar 

  • Steinberg FL, Yucel EK, Dumoulin CL, Souza SP (1990) Peripheral vascular and abdominal applications of MR flow imaging techniques. Magn Reson Med 14:315–320

    PubMed  CAS  Google Scholar 

  • Swan JS, Kennel TW, Wojtowycz MM, Grist TM (1993) Increased presaturation pulse gaps in two-dimensional time-of-flight MR angiography: a pitfall in diseased lower extremities. J Vasc Interv Radiol 4:569–571

    PubMed  CAS  Google Scholar 

  • Vierordt K (1855) Die Lehre vom Arterienpuls in gesunden und kranken Zuständen, gegründet auf eine neue Methode der bildlichen Darstellung des menschlichen Pulses. Vieweg, Braunschweig

    Google Scholar 

  • Visser K, Hunink MGM (2000) Peripheral arterial disease: gadolinium-enhanced MR angiography versus color-guided duplex US - a meta-analysis. Radiology 216:67–77

    PubMed  CAS  Google Scholar 

  • Vogl TJ, Hoffmann Y, Muhler A, Felix R (1994) [Contrast medium enhanced MR angiography]. Radiologe 34:423–429

    PubMed  CAS  Google Scholar 

  • Vorwerk D, Gunther RW, Schurmann K, Wendt G (1996) Aortic and iliac stenoses: follow-up results of stent placement after insufficient balloon angioplasty in 118 cases. Radiology 198:45–48

    PubMed  CAS  Google Scholar 

  • Vosshenrich R, Kopka L, Grabbe E (1997) [Contrast medium enhanced MR angiography of peripheral blood vessels]. Radiologe 37:579–586

    PubMed  CAS  Google Scholar 

  • Vosshenrich R, Kopka L, Castillo E, Bottcher U, Graessner J, Grabbe E (1998a) Electrocardiograph-triggered two-dimensional time-of-flight versus optimized contrast-enhanced three-dimensional MR angiography of the peripheral arteries. Magn Reson Imaging 16:887–892

    PubMed  CAS  Google Scholar 

  • Vosshenrich R, Castillo E, Kopka L, Rodenwaldt J, Grabbe E (1998b) [Contrast media-enhanced 3D MR angiography of the peripheral vessels using a “tracking technique” preliminary results]. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 168:90–94

    PubMed  CAS  Google Scholar 

  • Wang Y, Lee HM, Avakian R, Winchester PA, Khilnani NM, Trost D (1998a) Timing algorithm for bolus chase MR digital subtraction angiography. Magn Reson Med 39:691–696

    PubMed  CAS  Google Scholar 

  • Wang Y, Lee HM, Khilnani NM, et al (1998b) Bolus-chase MR digital subtraction angiography in the lower extremity. Radiology 207:263–269

    PubMed  CAS  Google Scholar 

  • Wedeen VJ, Rosen BR, Buxton R, Brady TJ (1986) Projective MRI angiography and quantitative flow-volume densitometry. Magn Reson Med 3:226–241

    PubMed  CAS  Google Scholar 

  • Westenberg JJ, Wasser MN, van der Geest RJ, et al (1999a) Gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries with multiple bolus injection: scan optimization in vitro and in vivo. Int J Card Imaging 15:161–73

    PubMed  CAS  Google Scholar 

  • Westenberg JJ, Wasser MN, van der Geest RJ, et al (1999b) Scan optimization of gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries with multiple bolus injections and in vitro validation of stenosis quantification. Magn Reson Imaging 17:47–57

    PubMed  CAS  Google Scholar 

  • Widmer LK, da Silva A, Widmer M-T (1994) Epidemiologie und sozialmedizinische Bedeutung der peripheren arteriellen Verschlusskrankheit. In: Alexander K (ed) Gefäßkrankheiten. Urban and Schwarzenberg, Munich

    Google Scholar 

  • Winterer JT, Laubenberger J, Scheffler K, et al (1999) Contrast-enhanced subtraction MR angiography in occlusive disease of the pelvic and lower limb arteries: results of a prospective intraindividual comparative study with digital subtraction angiography in 76 patients. J Comput Assist Tomogr 23:583–589

    PubMed  CAS  Google Scholar 

  • Yucel EK, Dumoulin CL, Waltman AC (1992) MR angiography of lower-extremity arterial disease: preliminary experience. J Magn Reson Imaging 2:303–309

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boos, M. (2002). Arteries of the Extremities. In: Arlart, I.P., Bongartz, G.M., Marchal, G. (eds) Magnetic Resonance Angiography. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56247-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56247-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43975-2

  • Online ISBN: 978-3-642-56247-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics