Peripheral Artery Physiology and Pathophysiology: Special Considerations

  • Caroline Schmidt-Lucke
  • Jan André Schmidt-Lucke

Abstract

Peripheral circulation usually refers to the vasculature of the upper and lower extremities. Apart from bones and joints, the two systems supplied by the peripheral circulation are skeletal muscle and skin. All considerations made below assume an unimpaired cardiac function and venous return.

Keywords

Ischemia Respiration Serotonin Angiotensin Histamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertuglia S, Colantuoni A, Intaglietta M (1994) Effects of l-NMMA and indomethacin on arteriolar vasomotion in skeletal muscle microcirculation of conscious and anesthetized hamsters. Micro- Vasc Res 48: 68–84Google Scholar
  2. 2.
    Berwanger CS, Jeremy JY, Stansby G (1995) Homocysteine and vascular disease. Br J Surg 82: 726–731PubMedGoogle Scholar
  3. 3.
    Blann AD (1993) Von Willebrand factor and the endothelium in vascular disease. Br J Biomed Sci 50: 125PubMedGoogle Scholar
  4. 4.
    Blann AD, McCollum CN (1994) Circulating endothelial cell/leukocyte adhesion molecules in atherosclerosis. Thromb Hemost 72: 151–154Google Scholar
  5. 5.
    Blann AD, Wai T, Maxell SRJ et al (1994) Increased levels of the soluble adhesion molecule E-selectin in essential hypertension. J Hypertens 12: 925PubMedGoogle Scholar
  6. 6.
    Blann AD, Wang JM, Wilson PB et al (1996) Serum levels of the TGV-βr are increased in atherosclerosis. Atherosclerosis 120: 221–226PubMedGoogle Scholar
  7. 7.
    Böger RH, Bode-Böger SM, Frölich JC (1996) The L-arginine-nitric oxide pathway: role in atherosclerosis and therapeutic implications. Atherosclerosis 127: 1–11PubMedGoogle Scholar
  8. 8.
    Bollinger A (1979) Funktionelle Angiologie. Thieme, StuttgartGoogle Scholar
  9. 9.
    Bollinger A, Hoffmann U, Seifert H (1989) Flux motion in peripheral ischemia. Prog Appl Microcirc 15: 87–92Google Scholar
  10. 10.
    Bollinger A, Hoffmann U, Franzeck UK (1991) Evaluation of flux motion in man by the laser Doppler technique. Bloodvessels 28: 21–26Google Scholar
  11. 11.
    Bongard O, Fagrell B (1990) Variations in laser Doppler flux and flow motion patterns in the dorsal skin of the human foot. Microvasc Res 39: 212–222PubMedGoogle Scholar
  12. 12.
    Borgström P, Bruttig B, Lindbom L, Intaglietta M, Arfors KE (1990) Microvascular responses in rabbit skeletal muscle after fixed volume hemorrhage. Am J Physiol 259: H190-H196Google Scholar
  13. 13.
    Boulanger C, Lüscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85: 587–590PubMedCentralPubMedGoogle Scholar
  14. 14.
    Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768–770PubMedGoogle Scholar
  15. 15.
    Burcher E, Atterhög JH, Pernow B, Rosell S (1977) Cardiovascular effects of substance P: effects on the heart and regional blood flow in the dog. In: von Euler US, Pernow B (eds) Substance P. Raven, New York, pp 261–268Google Scholar
  16. 16.
    Buschmann I, Schaper W (2000) The pathophysiology of the collateral circulation (arteriogenesis). J Pathol 190: 338–342PubMedGoogle Scholar
  17. 17.
    Casino PR, Kilcoyne CM, Quyyumi AA et al (1993) The role of nitric oxide in endothelium-dependent vasodilation of hypercholes-terolemic patients. Circulation 88: 2541–2547PubMedGoogle Scholar
  18. 18.
    Chen CW, Lee CH, Hsuie TR, Chang HY (1997) Vasomotion in rat diaphragm microcirculation at rest and during stepwise arterial pressure reduction. Acta Physiol Scand 161: 281–288PubMedGoogle Scholar
  19. 19.
    Cirillo R, Salvatico E, Aliev G, Prosdocimi M (1992) Effect of clori-cromene during ischemia and reperfusion of rabbit hindlimb: evidence for an involvement of leukocytes in reperfusion-mediat-ed tissue and vascular injury. J Cardiovasc Pharmacol 20: 969–975PubMedGoogle Scholar
  20. 20.
    Ciuffetti G, Mannarino E, Pasualini L et al (1988) The hemorrheo-logical role of cellular factors in peripheral vascular disease. VASA 17: 168–170PubMedGoogle Scholar
  21. 21.
    Coffman JD (1988) Pathophysiology and evaluation of obstructive arterial disease. Herz 13: 343–350PubMedGoogle Scholar
  22. 22.
    Colantuoni A, Bertuglia S, Intaglietta M (1985) Variations of rhythmic diameter changes in the arterial microvascular bifurcations. Pflugers Arch 403: 289–295PubMedGoogle Scholar
  23. 23.
    Cooke JP (1997) The pathophysiology of peripheral arterial disease, rational targets for drug intervention. Vasc Med 2: 227–230PubMedGoogle Scholar
  24. 24.
    Creager MA, Cooke JP, Mendelsohn ME et al (1990) Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest 86: 228–234PubMedCentralPubMedGoogle Scholar
  25. 25.
    da Silva A, Hild R, Nobbe F et al (1998) Periphere arterielle Ver-schlußkrankheit auf der Basis der chronischen arteriosclerosis obliterans. In: Rieger H, Schoop W (eds) Klinische Angiologie. Springer, Berlin Heidelberg New York, pp 413–470Google Scholar
  26. 26.
    Davies PF, Volin MV, Joseph L et al (1997) Endothelial responses to hemodynamic shear stress: spatial and temporal considerations. In: Born GVR, Schwartz CJ (eds) Vascular endothelium. Schattauer, Stuttgart, pp 167–176Google Scholar
  27. 27.
    Del Maschio A, Evangelista V, Rajtar G et al (1990) Platelet activation by polymorphonuclear leukocytes exposed to chemotactic agents. Am J Physiol 258: H870-H879Google Scholar
  28. 28.
    Del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98: 73–81PubMedGoogle Scholar
  29. 29.
    Drexler H (1997) Endothelial dysfunction — clinical implications. Prog Cardiovasc Dis 39: 287–324PubMedGoogle Scholar
  30. 30.
    Elliot TG, Cockcroft JR, Groop PH et al (1993) Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: blunted vasoconstriction in patients with micro-abuminuria. Clin Sci 85: 687–693Google Scholar
  31. 31.
    Ernst E, Hammerschmidt DE, Bagge U et al (1987) Leukocytes and the risk of ischemic diseases. JAMA 257: 2318–2324PubMedGoogle Scholar
  32. 32.
    Faber JE, Harris PD, Wiegman DL (1982) Anesthetic depression of microcirculation, central hemodynamics, and respiration in decerebrate rats. Am J Physiol 243: H837-H843Google Scholar
  33. 33.
    Fernandez-Ortiz A, Fuster V (1996) Pathophysiology of ischemic syndromes. In: Loscalzo J, Creager MA, Dzau VJ (eds) Vascular medicine, 2nd edn. Little Brown, Boston, pp 333–347Google Scholar
  34. 34.
    Folkow B, Neil E (1971) Circulation. Oxford University Press, New YorkGoogle Scholar
  35. 35.
    Furchgott RF, Zawaddzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 228: 373–376Google Scholar
  36. 36.
    Gerstberger R, Meyer JU, Rettig R, Printz M, Intaglietta M (1987) Regulatory role of vasoactive peptides in subcutaneous skin microcirculation of the hamster. Int J Microcirc Clin Exp 7: 3–14Google Scholar
  37. 37.
    Goto K (1997) Endothelin: from basic to pathophysiological research. In: Rubanyi GM, Dzau VJ (eds) The endothelium in clinical practice Dekker, New York, pp 125–148Google Scholar
  38. 38.
    Grainger DJ, Kemp PR, Metcalfe JC et al (1995) The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis. Nat Med 1: 74–79PubMedGoogle Scholar
  39. 39.
    Granger HJ, Meininger GA, Borders JL et al (1984) Microcirculation of skeletal muscle. In: Mortillaro NA (ed) The physiology and pharmacology of the microcirculation, vol 2. Academic, Orlando, pp 182–265Google Scholar
  40. 40.
    Griffith TM, Edwards DH (1993) Mechanisms underlying chaotic vasomotion in isolated resistance arteries: roles of calcium and EDRF. Biorheology 30: 333–347PubMedGoogle Scholar
  41. 41.
    Gute DC, Ishida T, Yarimizu K, Korthuis RJ (1998) Inflammatory responses to ischemia and reperfusion in skeletal muscle. Mol Cell Biochem 179: 169–187PubMedGoogle Scholar
  42. 42.
    Halperin JL, Creager MA (1996) Arterial obstructive diseases of the extremities. In: Loscalzo J, Creager MA, Dzau VJ (eds) Vascular medicine, 2nd edn. Little Brown, Boston, pp 825–852Google Scholar
  43. 43.
    Hansen PR (1998) Inflammatory alterations in the myocardial microcirculation. J Mol Cell Cardiol 30: 2555–2559PubMedGoogle Scholar
  44. 44.
    Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65: 513–525PubMedGoogle Scholar
  45. 45.
    Harris AG, Leiderer R, Peer F, Messmer K (1996) Skeletal muscle microvascular and tissue injury after varying durations of ischemia. Am J Physiol 271: H2388-H2398Google Scholar
  46. 46.
    Haynes WG, Webb DJ (1994) Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 344: 852–854PubMedGoogle Scholar
  47. 47.
    Haynes WG, Webb DJ (1998) Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 16: 1081–1098PubMedGoogle Scholar
  48. 48.
    Heiss HW, Rieger H (1998) Akuter Extremitätenarterienverschluß. In: Rieger H, Schoop W (eds) Klinische Angiologie. Springer, Berlin Heidelberg New York, pp 395–412Google Scholar
  49. 49.
    Jackson WF, Mülsch A, Busse R (1991) Rhythmic smooth muscle activity in hamster aortas is mediated by continuous release of NO from the endothelium. Am J Physiol 260: H248-H253Google Scholar
  50. 50.
    Jackson WF, Busse R (1991) Elevated guanosine 3′ : 5′-cyclic monophosphate mediates the depression of nitrovasodilator reactivity in endothelium-intact blood vessels. Naunyn-Schmiedebergs Arch Pharmacol 344: 345–350PubMedGoogle Scholar
  51. 51.
    Johnson PC (1986) Autoregulation of blood flow. Circ Res 59: 483–495PubMedGoogle Scholar
  52. 52.
    Kadono T, Kikuchi K, Kubo M et al (1996) Serum concentrations of basic fibroblast growth factor in collagen diseases. J Am Acad Dermatol 35: 392–397PubMedGoogle Scholar
  53. 53.
    Kavanaugh A, Oppenheimer-Marks N (1992) The role of the vascular endothelium in the pathogenesis of vasculitis. In: LeRoy EC (ed) Systemic vasculitis: the biological basis. Marcel Dekker, New York, PP 27ffGoogle Scholar
  54. 54.
    Kiowski W, Lüscher TF, Linder L et al (1991) Endothelin-1-induced vasoconstriction in humans. Reversal by calcium channel blockade but not by nitrovasodilators or endothelin-derived relaxing factor. Circulation 83: 469–475PubMedGoogle Scholar
  55. 55.
    Koller A, Sun D, Kaley G (1993) Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ Res 72: 1276–1284PubMedGoogle Scholar
  56. 56.
    Lerman A, Burnett JC (1992) Intact and altered endothelium in regulation of vasomotion. Circulation 86 [Suppl 6]: III12-III19Google Scholar
  57. 57.
    Lewis T (1929) Experiments relating to the peripheral mechanism involved in spasmodic arrest of the circulation in the fingers, a variety of Raynaud’s disease. Heart 15: 7Google Scholar
  58. 58.
    Linder L, Kiowski W, Bühler FR et al (1990) Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation 81: 1762–1767PubMedGoogle Scholar
  59. 59.
    Lip GYH, Blann AD (1995) Von Willebrand factor and its relevance to cardiovascular disorders. Br Heart J 74: 580–583PubMedCentralPubMedGoogle Scholar
  60. 60.
    Loutzenhiser R, Epstein M, Hayashi K, Horton C (1990) Direct visualization of effects of endothelin on the renal microvasculature. Am J Physiol 258: F6i-F68Google Scholar
  61. 61.
    Lucke C, Brucks S, Bentrup A, Hartung D, Elberich M, Klein H, Schmidt JA (1997) Scintigraphic quantification and objective criteria for changes in leg perfusion under prostaglandin E1 in patients with peripheral arterial occlusive disease (abstract). Eur Heart J 18 [Suppl] : 183Google Scholar
  62. 62.
    Lucke C, Kollmann A, Prinzen M, Mlasowsky B, Klein HU, Schmidt JA (1998) Veränderungen der Makro- und Mikrozirkulation am Bein unter arterieller Infusion vasoaktiver Substanzen bei gesunden Probanden — ein neues Modell. Z Kardiol 87 [Suppl 1]: 140Google Scholar
  63. 63.
    McLenachan JM, Vita J, Fish RD et al (1990) Early evidence of endothelial vasodilator dysfunction at coronary branch points. Circulation 81: 1169–1173Google Scholar
  64. 64.
    Menger MD, Vollmar B (1994) In vivo analysis of microvascular reperfusion injury in striated muscle and skin. Microsurgery 15: 383–389PubMedGoogle Scholar
  65. 65.
    Meyer JU, Lindbom L, Intaglietta M (1987) Coordinated diameter oscillations at arteriolar bifurcations in skeletal muscle. Am J Physiol 253: H568-H573Google Scholar
  66. 66.
    Meyer JU, Borgström P, Intaglietta M (1989) Is vasomotion due to microvascular pacemaker cells? Prog Appl Microcirc 15: 41–48Google Scholar
  67. 67.
    Milner P, Ralevic V, Hopwood M, Feher E, Lincoln J, Kirkpatrick KA, Burnstock G (1989) Ultrastructural localization of substance P and choline acetyltransferase in endothelial cells of rat coronary artery and release of substance P and acetylcholine during hypoxia. Experientia 45: 121–125PubMedGoogle Scholar
  68. 68.
    Nagel T, Resnick N, Atkinson WJ et al (1994) Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 94: 885–891PubMedCentralPubMedGoogle Scholar
  69. 69.
    Nash GB, Thomas PRS, Dormandy JA (1988) Abnormal flow properties of white cells in patients with severe ischemia of the leg. Br Med J 296: 1699–1701Google Scholar
  70. 70.
    Öhlén A (1988) Neuropeptides in skeletal muscle microcirculation. Thesis, StockholmGoogle Scholar
  71. 71.
    Öhlén A, Lindbom L, Staines W, Hökfelt T, Cuello AC, Fischer JA, Hedqvist P (1987) Substance P and calcitonin gene-related peptide: immunohistochemical localization and microvascular effects in rabbit skeletal muscle. Naunyn-Schmiedebergs Arch Pharmacol 336: 87–93PubMedGoogle Scholar
  72. 72.
    Öhlén A, Thureson-Klein A, Lindbom L, Hökfelt T, Hedqvist P (1988) Substance P and NPY innervation of microvessels in the rabbit tenuissimus muscle. Microvasc Res 36: 117–129PubMedGoogle Scholar
  73. 73.
    Ohta I, Ohta A, Shibata M, Kamiya A (1988) Oxygen transport to tissue recurrent blood flow supply by grouped capillaries in skeletal muscle with or without facilitated diffusion. In: Mochizuki M, Honig CR, Koyama T, Goldstick TK, Bruley DF (eds) Oxygen transport to tissue . Plenum, New YorkGoogle Scholar
  74. 74.
    O’Rourke ST, Vanhoutte PM (1996) Vascular pharmacology. In: Loscalzo J, Creager MA, Dzau VJ (eds) Vascular medicine, 2nd edn. Little Brown, Boston, pp 117–140Google Scholar
  75. 75.
    Panza JA, Quyyumi AA, Brush JE et al (1990) Abnormal endothe-lium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323: 22–27PubMedGoogle Scholar
  76. 76.
    Pohl U, Holtz J, Busse R et al (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8: 37–47PubMedGoogle Scholar
  77. 77.
    Quaschning T, Ruschitzka FT, Maier W et al (2000) Die Rolle des Endothels bei der Entstehung und Behandlung von Gefäßerkrankungen. Internist 41: 355–362PubMedGoogle Scholar
  78. 78.
    Pearson JD (1993) Markers of endothelial perturbation and damage. Br J Rheumatol 32: 651–652PubMedGoogle Scholar
  79. 79.
    Rangemark C, Wennmalm A (1992) Endothelium-dependent and -independent vasodilation and reactive hyperemia in healthy smokers. J Cardiovasc Pharmacol 20 [Suppl 12]: S198-S201Google Scholar
  80. 80.
    Rassoul F, Richter V, Janke C, Purschwitz K, Klotzer B, Geisel J, Herrmann W (2000) Plasma homocysteine and lipoprotein profile in patients with peripheral arterial occlusive disease. Angiology 51: 189–196PubMedGoogle Scholar
  81. 81.
    Raynaud M (1862) De l’asphyxie locale et de la gangrène symétrique des extrémités. Thèse, Faculté de Médecine, ParisGoogle Scholar
  82. 82.
    Ross R (1986) The pathogenesis of atherosclerosis. N Engl J Med 314: 488–500PubMedGoogle Scholar
  83. 83.
    Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 231: H405-H407Google Scholar
  84. 84.
    Schaper W, Buschmann I (1999) VEGF and therapeutic opportunities in cardiovascular diseases. Curr Opin Biotechnol 10: 541–543PubMedGoogle Scholar
  85. 85.
    Scheffler A, Rieger H (1992) Spontaneous oscillations of laser Doppler skin blood flux in peripheral arterial occlusive disease. Int J Microcirc Clin Exp 11: 249–261PubMedGoogle Scholar
  86. 86.
    Schiffrin EL, Intengan HD, Thibault G et al (1997) Clinical significance of endothelin in cardiovascular disease. Curr Opin Cardiol 12: 354–367PubMedGoogle Scholar
  87. 87.
    Schmidt JA, Bracht C, Leyhe A, von Wichert P (1990) Transcutaneous measurement of oxygen and carbon dioxide (tcPO2 and tcPCO2) during treadmill exercise in patients with arterial occlusive disease (AOD) — stages I and II. Angiology 41: 547–552PubMedGoogle Scholar
  88. 88.
    Schmidt JA, Intaglietta M, Borgström P (1992) Periodic hemodynamics in skeletal muscle during local arterial pressure reduction. J Appl Physiol 73: 1077–1083PubMedGoogle Scholar
  89. 88a.
    Schmidt JA, Borgstöm P, Bruttig SP, Fronek A, Intaglietta M (1993) Vasomotion as a flow-dependent phenomenon. Prog Appl Microcirc 20: 34–51Google Scholar
  90. 89.
    Schmidt JA, Borgström P, Intaglietta M (1993) Neurogenic modulation of periodic hemodynamics in rabbit skeletal muscle. J Appl Physiol 75: 1216–1221PubMedGoogle Scholar
  91. 90.
    Schmidt JA, Borgström P, Firestone GP, von Wichert P, Intaglietta M, Fronek A (1993) Periodic hemodynamics (flow motion) in peripheral arterial occlusive disease. J Vasc Surg 18: 207–215PubMedGoogle Scholar
  92. 91.
    Schmidt JA, Breit GA, Borgström P, Intaglietta M (1995) Periodic hemodynamics in skeletal muscle, studied with multiple laser Doppler flow-probes. Int J Microcirc 15: 28–36Google Scholar
  93. 92.
    Schmidt JA (1996) Periodic hemodynamics in health and disease. Landes/Chapman and Hall, New York, Springer, Berlin Heidelberg New YorkGoogle Scholar
  94. 93.
    Schmidt JA, Lucke C, Brucks S, Klauck M, von Bierbrauer A (1997) TcPO2 measurement during treadmill exercise in naftidrofuryl-treated patients with peripheral arterial occlusive disease — stage II (abstract). Proceedings of the 16th Jahrestagung der deutschen Gesellschaft für klinische Mikrozirkulation und Hämorrheologie, p 29Google Scholar
  95. 94.
    Schmidt-Lucke C, Reinhold D, Prinzen M, Mlasowsky B, Kollmann A, Klein HU, Ansorge S, Schmidt-Lucke JA (1999) The cytoprotec-tive action of transforming growth factor beta 1 (TGF-β1) to maintain vascular reactivity does not involve vascular endothelial growth factor (VEGF) in heavy smokers (abstract). Proceedings of the Jahrestagung der Gesellschaft für Mikrozirkulation und Vaskuläre Biologie, p 121Google Scholar
  96. 95.
    Schmidt-Lucke C, Reinhold D, Prinzen M, Mlasowsky B, Kollmann A, Klein HU, Ansorge S, Schmidt-Lucke JA (1999) Vascular endothelial growth factor (VEGF) correlates with endothelial dysfunction in healthy smoking and non-smoking individuals (abstract). Bas Res Cardiol 94: 370Google Scholar
  97. 96.
    Schretzenmayr A (1933) Über kreislaufregulatorische Vorgänge in den großen Arterien bei der Muskelarbeit. Pflugers Arch 232: 743–748Google Scholar
  98. 97.
    Segal SS, Bény JL (1991) Acetylcholine hyperpolarizes arterioles without dye coupling between smooth muscle and endothelial cells (abstract). Proceedings of the fifth world congress for Microcirculation, Louisville, KY, p 591Google Scholar
  99. 98.
    Segal SS, Beny JL (1992) Intracellular recording and dye transfer in arterioles during blood flow control. Am J Physiol 263: H1-H7Google Scholar
  100. 99.
    Shepherd JT (1983) Circulation to skeletal muscle. In: Shepherd JT, Abboud FM (eds) Handbook of physiology, sect 2. The cardiovascular system, vol III, part I. American Physiological Society, Bethesda, MD, pp 319–370Google Scholar
  101. 100.
    Shimokawa H, Vanhoutte PM (1989) Impaired endothelium-de-pendent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ Res 64: 900–914PubMedGoogle Scholar
  102. 101.
    Shyy JY, Lin MC, Han J et al (1995) The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci USA 15: 8069–8073Google Scholar
  103. 102.
    Smiesko V, Kozik J, Dolezel S (1985) Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels 22: 247–251PubMedGoogle Scholar
  104. 103.
    Thulesius O (1991) Pathophysiology of cold hypersensitivity. In: Cooke ED, Nicolaides AN, Porter JM (eds) Raynaud’s syndrome. Med Orion, London, pp 21–29Google Scholar
  105. 104.
    Thulesius O (1991) The role of the endothelium in vascular spasm. In: Cooke ED, Nicolaides AN, Porter JM (eds) Raynaud’s syndrome. Med Orion, London, pp 15–19Google Scholar
  106. 105.
    Topper JN, Gimbrone MA Jr (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial pheno-type. Mol Med Today 5: 40–46PubMedGoogle Scholar
  107. 106.
    Tsai AG, Intaglietta M (1993) Evidence of flow motion induced changes in local tissue oxygenation. Int J Microcirc Clin Exp 12: 75–88PubMedGoogle Scholar
  108. 107.
    Tsao PS, Buitrago R, Chang H et al (1995) Effect of diabetes on monocyte-endothelial interactions and endothelial superoxide production in fructose-induced insulin-resistant and hypertensive rats (abstract). Circulation 92 [Suppl I]: I-558Google Scholar
  109. 108.
    Vallance P, Leone A, Calver A et al (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572–575PubMedGoogle Scholar
  110. 109.
    Vanhoutte PM, Houston DS (1985) Platelets, endothelium and vasospasm. Circulation 72: 728–734PubMedGoogle Scholar
  111. 110.
    Vollmar B, Preissler G, Menger MD (1994) Hemorrhagic hypotension induces arteriolar vasomotion and intermittent capillary perfusion in rat pancreas. Am J Physiol 267: H1936-H1940Google Scholar
  112. 111.
    Von Bierbrauer A, Ehlenz K, Herzog P, Cassel W, von Wichert P (1995) Plasma endothelin concentration during cold provocation in primary Raynaud’s syndrome. Dtsch Med Wochenschr 120: 902–906Google Scholar
  113. 112.
    Weber C, Erl W, Pietsch A et al (1994) Antioxidants inhibit monocyte adhesion by suppressing nuclear factor kappa B mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Atheroscler Thromb 14: 1665–1673Google Scholar
  114. 113.
    Wiedemann MP, Tuma RF, Mayrovitz HN (1981) Factors involved in the regulation of blood flow. In: Wiedemann MP, Tuma RF, Mayrovitz HN (eds) An introduction to microcirculation. Academic, New York, pp 99–139Google Scholar
  115. 114.
    Witzleb E (1980) Funktionen des Gefäßsystems. In: Schmidt RF, Thews G (eds) Physiologie des Menschen, 20th edn. Springer, Berlin Heidelberg New York, pp 435–499Google Scholar
  116. 115.
    Xu D, Emoto N, Giad A et al (1994) ECE 1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78: 473–485PubMedGoogle Scholar
  117. 116.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415PubMedGoogle Scholar
  118. 117.
    Zeiher AM, Schächinger V, Minners J (1995) Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 92: 1094–1100PubMedGoogle Scholar
  119. 118.
    Zweifach BW, Lipowsky HH (1984) Pressure-flow relations in blood and lymph microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology. Sect 2: The cardiovascular system. Vol 4, Parts 1 and 2: Microcirculation. (American Physiological Society) Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Caroline Schmidt-Lucke
  • Jan André Schmidt-Lucke

There are no affiliations available

Personalised recommendations