Skip to main content

Arterial Wall Mechanics

  • Chapter
  • 61 Accesses

Abstract

Large arteries serve two important mechanical functions: the delivery of blood to the tissues of the body and the buffering of pulsatile pressure and flow. The cushioning function of the large arteries alters molecular and cellular events through cyclic stretch [1]. However, its most important function is to reduce impedence (dynamic resistance to the oscillatory components of pulsatile flow) to left ventricular outflow. This is accomplished directly by arterial expansion during systole and storage of blood in the large arteries for run-off in diastole. This function is called the Windkessel effect after the German word describing a fire pump that performed a similar task. In addition, the pulsatile load encountered by the left ventricle is indirectly affected by the transmission rate of anterograde and reflected pressure waves (pulse wave velocity). Reflected waves can return to the heart during systole and summate with anterograde waves to increase left ventricular impedence [2]. These direct and indirect effects on left ventricular afterload are dependent upon the size and stiffness of the large arteries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leung DMY, Glagov S, Mathews MB (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477

    Article  CAS  PubMed  Google Scholar 

  2. Nichols WW, MF O’Rourke (1990) McDonald’s blood flow in arteries; theoretical, experimental, and clinical principles. Lea and Febiger, Philadelphia

    Google Scholar 

  3. Lawton RW (1954) The thermoelastic behavior of isolated aortic strips in the dog. Circ Res 2:344–353

    Article  CAS  PubMed  Google Scholar 

  4. Carew TE, Vaishnav RN, Patel DJ (1968) Compressibility of the arterial wall. Circ Res 23:61–68

    Article  CAS  PubMed  Google Scholar 

  5. Patel DJ, Fry DL (1966) Longitudinal tethering of arteries in dogs. Circ Res 19:1011–1021

    Article  CAS  PubMed  Google Scholar 

  6. Dobrin PB (1997) Physiology and pathophysiology of blood vessels. In: Sidawy AN, Sumpio BE, DePalma RG (eds) The basic science of vascular disease. Futura, Armonk, pp 69–105

    Google Scholar 

  7. Zatzman M, Stacy RW, Randall J, Eberstein A (1954) Time course of stress-relaxation in isolated arterial segments. Am J Physiol 177: 299–302

    CAS  PubMed  Google Scholar 

  8. Apter JT, Rabinowitz M, Cummings DH (1966) Correlation of visco-elastic properties of large arteries with microscopic structure. Circ Res 19:104–121

    Article  CAS  Google Scholar 

  9. Goto M, Kimoto Y (1966) Hysteresis and stress-relaxation of the blood vessels studied by a universal tensile testing instrument. Jpn J Physiol 16:169–184

    Article  CAS  PubMed  Google Scholar 

  10. Goedhard WJA, Knoop AA (1973) A model of the arterial wall. J Bio-mech 6:281–288

    CAS  Google Scholar 

  11. Peterson LH, Jensen RE, Parnell J (1960) Mechanical properties of arteries in vivo. Circ Res 8:622–639

    Article  Google Scholar 

  12. Armentano RL, Barra JG, Levenson JA, Simon A, Pichel RH (1995) Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ Res 76:468–478

    Article  CAS  PubMed  Google Scholar 

  13. Stefanadis C, Dernellis J, Vlachopoulos C, Tsioufis C, Tsiamis E, Toutouzas K, Pitsavos C, Toutouzas P (1997) Aortic function in arterial hypertension is determined by pressure-diameter relation: effects of diltiazem. Circulation 96:1853–1858

    Article  CAS  PubMed  Google Scholar 

  14. Bank AJ, Kaiser DR, Rajala S, Cheng A (1999) In vivo human brachial artery elastic mechanics: effects of smooth muscle relaxation. Circulation 100:41–47

    Article  CAS  PubMed  Google Scholar 

  15. Bauer RD, Busse R, Schabert A, Summa Y, Wetterer E (1979) Separate determination of the pulsatile elastic and viscous forces developed in the arterial wall in vivo. Pflugers Arch 380:221–226

    Article  CAS  PubMed  Google Scholar 

  16. Armentano RL, Megnien JL, Simon A, Bellenfant F, Barra JG, Levenson JA (1995) Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26:48–54

    Article  CAS  PubMed  Google Scholar 

  17. Ramsey MW, Goodfellow J, Jones CJ, Luddington LA, Lewis MJ, Henderson AH (1995) Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 92:3212–3219

    Article  CAS  PubMed  Google Scholar 

  18. Dobrin PB, Canfield T (1977) Identification of smooth muscle series elastic component in intact carotid artery. Am J Physiol 232: H122–H130

    Google Scholar 

  19. Wiederhielm CA (1965) Distensibility characteristics of small blood vessels. Fed Proc 24:1075–1084

    CAS  PubMed  Google Scholar 

  20. Learoyd R, Taylor M (1966) Alterations with age in visco-elastic properties of human arterial walls. Circ Res 18:278–292

    Article  CAS  PubMed  Google Scholar 

  21. Latham R, Westerhof N, Sipkema P, Rubal B, Reuderink P, Murgo J (1985) Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 72:1257–1269

    Article  CAS  PubMed  Google Scholar 

  22. Nichols WW, McDonald DA (1972) Wave-velocity in the proximal aorta. Med Biol Eng 10:327–335

    Article  CAS  PubMed  Google Scholar 

  23. Roy CS (1880) The elastic properties of the arterial wall. J Physiol (Lond) 3:125–162

    Google Scholar 

  24. Roach MR, Burton AC (1957) The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 35:681–690

    Article  CAS  PubMed  Google Scholar 

  25. Armentano RL, Levenson JA, Barra JG, Fischer EI, Breitbart G J, Pichel RH, Simon A (1991) Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol 260: H1870–H1877

    Google Scholar 

  26. Van Bortel LM, Kool MJ, Boudier HA, Struijker BH (1995) Effects of antihypertensive agents on local arterial distensibility and compliance. Hypertension 26:531–534

    Article  PubMed  Google Scholar 

  27. Benetos A, Asmar R, Safar M, Salvi P, Safar ME (1994) Heterogenicity of the arterial tree in essential hypertension: a noninvasive study of the terminal aorta and the common carotid artery. J Hum Hypertens 8:501–507

    CAS  PubMed  Google Scholar 

  28. Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME (1993) Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb 13: 90–97

    Article  CAS  PubMed  Google Scholar 

  29. Gross DR, Hunter JF, Hwang NHC, Patel DJ (1981) Pressure-diameter relationship in the coronary artery of intact, awake calves. J Biomech 14:613–620

    Article  CAS  PubMed  Google Scholar 

  30. Pagani M, Gaig H, Sherman A, Manders WT, Quinn P, Patrick T, Franklin D, Vatner SF (1975) Measurement of multiple simultaneous small dimensions and study of arterial pressure-diameter relation in conscious animals. Am J Physiol 229:286–290

    CAS  PubMed  Google Scholar 

  31. Vatner SF, Hintze TH (1982) Effects of calcium-channel antagonist on large and small coronary arteries in conscious dogs. Circulation 66:579–588

    Article  CAS  PubMed  Google Scholar 

  32. Barra JG, Armentano RL, Levenson JA, Fischer EI, Pichel RH, Simon A (1993) Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circ Res 73: 1040–1050

    Article  CAS  PubMed  Google Scholar 

  33. Patel DJ, Mallos AJ, Fry DL (1961) Aortic mechanics in the living dog. J Appl Physiol 16:293–299

    CAS  PubMed  Google Scholar 

  34. Wetterer E, Bauer RD, Busse R (1979) New ways of determining the propagation coefficient and the visco-elastic behavior of arteries in situ. In: Bauer RD, Busse R (eds) The arterial system. Springer, Berlin Heidelberg New York, pp 35–47

    Google Scholar 

  35. Merillon JP, Motte G, Fruchand J, Masquet C, Gourgon R (1979) Evaluation of the elasticity and characteristic impedance of the ascending aorta in man. Cardiovasc Res 12:401–406

    Article  Google Scholar 

  36. Stefanadis C, Wooley CF, Bush CA, Kolibash AJ, Boudoulas H (1987) Aortic distensibility abnormalities in coronary artery disease. Am J Cardiol 59:1300–1304

    Article  CAS  PubMed  Google Scholar 

  37. Mohladdin RH, Underwood SR, Bogren HG, Firmin DN, Klipstein RH, Rees RSO, Longmore DB (1989) Regional aortic compliance studied by magnetic resonance imaging: effects of age, training, and coronary artery disease. Br Heart J 62:90–96

    Article  Google Scholar 

  38. Dart AM, LaLombe F, Yeoh JK, Cameron JD, Jennings GL, Laufer E, Esmore DS (1991) Aortic distensibility in patients with isolated hypercholesterolaemia, coronary artery disease or cardiac transplant. Lancet 338:270–273

    Article  CAS  PubMed  Google Scholar 

  39. Mugge A, Daniel WG, Niedermeyer J, Hausmann D, Nikutta P, Lichtlen PR (1992) Usefulness of a new automated boundary detection system (acoustic quantification) for assessing stiffness of the descending thoracic aorta by transesophageal echocardiography. Am J Cardiol 70:1629–1631

    Article  CAS  PubMed  Google Scholar 

  40. Porter TR, Taylor D, Pandian NG, Nixon JV, Vetrovic GW, Mohanty PK (1993) Pulmonary arterial dynamics in congestive heart failure in humans: significance of pulmonary arterial stiffness. J Vase Med Biol 4:105–114

    Google Scholar 

  41. Xu J, Shiota T, Omota R, Zhou X, Kyo S, Ishii M, Rice MJ, Sahn DJ (1997) Intravascular ultrasound assessment of regional aortic wall stiffness, distensibility, and compliance in patients with coarctation of the aorta. Am Heart J 134:93–98

    Article  CAS  PubMed  Google Scholar 

  42. Reddy KG, Suneja R, Nair RN, Dhawale P, Hodgson JM (1993) Measurement by intracoronary ultrasound of in vivo arterial distensibility within atherosclerotic lesions. Am J Cardiol 72:1232–1237

    Article  CAS  PubMed  Google Scholar 

  43. Kerber S, Heinemann-Vechtel O, Günther F, Rahmel A, Weyand M, Deng M, Scheid HH, Briethardt G (1996) Coronary compliance in patients following orthotopic heart transplantation. An intravascular ultrasound study. Eur Heart J 17:1891–1897

    Article  CAS  PubMed  Google Scholar 

  44. Alfonso F, Macaya C, Goicolea J, Hernandez R, Segovio J, Zamorano J, Banuelos C, Zarco P (1994) Determinants of coronary compliance in patients with coronary artery disease: an intravascular ultrasound study. J Am Coll Card 23:879–884

    Article  CAS  Google Scholar 

  45. Nakatani S, Yamagishi M, Tamai J, Goto Y, Umeno T, Kawaguchi A, Yutani C, Miyatake K (1995) Assessment of coronary artery distensibility by intravascular ultrasound: application of simultaneous measurements of luminal area and pressure. Circulation 91:2904–2910

    Article  CAS  PubMed  Google Scholar 

  46. Bank AJ, Wilson RF, Kubo SH, Holte JE, Dresing TJ, Wang H (1995) Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties. Circ Res 77:1008–1016

    Article  CAS  PubMed  Google Scholar 

  47. Bank AJ, Wang H, Holte JE, Mullen K, Shammas R, Kubo SH (1996) Contribution of collagen, elastin and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation 94:3263–3270

    Article  CAS  PubMed  Google Scholar 

  48. Hayoz D, Tardy Y, Perret F, Waeber B, Meister JJ, Brunner HR (1992) Non-invasive determination of arterial diameter and distensibility by echo-tracking techniques in hypertension. J Hypertens Suppl 10: S95–100

    Article  Google Scholar 

  49. Laurent S, Lacolley P, Girerd X, Caviezel B, Beck L, Challande P, Safar ME (1994) Arterial compliance is not diminished in hypertensive patients when compared at the same level of blood pressure (in French). Arch Malad Coeur Vaisseaux 87:1069–1072

    CAS  Google Scholar 

  50. Kool MJ, Lustermans FA, Breed JG, Struyker BH, Hoeks AP, Reneman RS, Van Bortel LM (1995) The influence of Perindopril and the diuretic combination amiloride+hydrochlorothiazide on the vessel wall properties of large arteries in hypertensive patients. J Hypertens 13:839–848

    Article  CAS  PubMed  Google Scholar 

  51. Hoeks AP, Brands PJ, Reneman RS (1992) Assessment of the arterial distension waveform using Doppler signal processing. J Hypertens Suppl 10:S19–S22

    Article  Google Scholar 

  52. Hoeks AP, Brands PJ, Smeets FA, Reneman RS (1990) Assessment of the distensibility of superficial arteries. Ultrasound Med Biol 16: 121–128

    Article  CAS  PubMed  Google Scholar 

  53. Bond MG, Barnes RW, Riley WA (1991) High-resolution B-mode ultrasound scanning methods in the Atherosclerosis Risk in Communities (ARIC) Study. J Neuroimag 1:68–73

    Google Scholar 

  54. O’Leary DH, Polak JF, Wolfson SK, Bond MG, Bommer W, Sheth S, Psaty BM, Sharett AR, Manolio TA (1991) Use of sonography to evaluate carotid atherosclerosis in the elderly: the Cardiovascular Health Study. Stroke 22:1155–1163

    Article  PubMed  Google Scholar 

  55. Pignoli P, Tremoli E, Poli A (1986) Intimai plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 74:1399–1406

    Article  CAS  PubMed  Google Scholar 

  56. Riley WA, Barnes RW, Applegate WB (1992) Reproducibility of noninvasive ultrasonic measurement of carotid atherosclerosis. The Asymptomatic Carotid Artery Plaque Study. Stroke 23:1062–1068

    Article  CAS  PubMed  Google Scholar 

  57. Salonen R, Salonen JT (1991) Determinants of carotid intima-media thickness: a population-based ultrasonography study in eastern Finnish men. J Intern Med 229:225–231

    Article  CAS  PubMed  Google Scholar 

  58. Hoeks AP, Willekes C, Boutouyrie P, Brands PJ, Willigers JM, Reneman RS (1997) Automated detection of local artery wall thickness based on M-line signal processing. Ultrasound Med Biol 23: 1017–1023

    Article  CAS  PubMed  Google Scholar 

  59. Willekes C, Hoeks APG, Bots ML, Brands PJ, Willigers J, Reneman RS (1999) Evaluation of off-line automated intima-media thickness detection of the common carotid artery based on M-line signal processing. Ultrasound Med Biol 25:57–64

    Article  CAS  PubMed  Google Scholar 

  60. Dobrin PB, Rovick AA (1969) Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol 217: 1644–1652

    CAS  PubMed  Google Scholar 

  61. Gow BS (1980) Circulatory correlates: vascular impedance, resistance and capacity. In: Bohr DF, Somlyo AP, Somlyo AV (eds) Handbook of physiology. American Physiological Society, Bethesda, pp 353–408

    Google Scholar 

  62. Yano M, Kumada T, Kohno M, Hiro T, Kohtoku S, Miura T, Katayama K, Ozaki M, Kusukawa R (1989) Effect of diltiazem on aortic pressure-diameter relationship in dogs. Am J Physiol 256:H1580–H1587

    Google Scholar 

  63. Safar ME, London GM, Bouthier JA, Levenson JA, Laurent S (1987) Brachial artery cross-sectional area and distensibility before and after arteriolar vasodilation in men with sustained hypertension. J Cardiovasc Pharmacol 9:734–742

    Article  CAS  PubMed  Google Scholar 

  64. Weber R, Stergiopulos N, Brunner HR, Hayoz D (1996) Contributions of vascular tone and structure to elastic properties of medium-sized artery. Hypertension 27 (part 2):816–822

    Article  CAS  PubMed  Google Scholar 

  65. Fitchett DH (1984) Forearm arterial compliance: a new measure of arterial compliance. Cardiovasc Res 18:651–656

    Article  CAS  PubMed  Google Scholar 

  66. Westling H, Jansson L, Jonson B, Nilsen R (1984) Vasoactive drugs and elastic properties of human arteries in vivo, with special reference to the action of nitroglycerine. Eur Heart J 5:609–616

    CAS  PubMed  Google Scholar 

  67. Boutouyrie P, Lacolley P, Girerd X, Beck L, Safar ME, Laurent S (1994) Sympathetic activation decreases medium-sized arterial compliance in humans. Am J Physiol 267:H1368–H1376

    Google Scholar 

  68. Hayoz D, Rutschmann B, Perret F, Niederberger M, Tardy Y, Mooser V, Nussberger J, Waeber B, Brunner HR (1992) Conduit artery compliance and distensibility are not necessarily reduced in hypertension (see comments). Hypertension 20:1–6

    Article  CAS  PubMed  Google Scholar 

  69. Grassi G, Giannattasio C, Failla M (1995) Sympathetic modulation of radial artery compliance in congestive heart failure. Hypertension 26:348–354

    Article  CAS  PubMed  Google Scholar 

  70. Dobrin PB (1983) Vascular mechanics. In: Shepherd JT, Abboud RM (eds) Handbook of physiology. American Physiological Society, Bethesda, pp 65–102

    Google Scholar 

  71. Bergel DH (1960) The visco-elastic properties of the arterial wall. Thesis, University of London

    Google Scholar 

  72. Gow BS, Hadfield C (1979) The elastic properties of human and canine epicardial coronary arteries. Circ Res 45:588–594

    Article  CAS  PubMed  Google Scholar 

  73. Dobrin PB (1978) Mechanical properties of arteries. Physiol Rev 58:397–460

    CAS  PubMed  Google Scholar 

  74. Bank AJ, Kaiser DR (1998) Smooth muscle relaxation: effects on arterial compliance, distensibility, elastic modulus and pulse wave velocity. Hypertension 32:356–359

    Article  CAS  PubMed  Google Scholar 

  75. Cox RH (1978) Regional variation of series elasticity in canine arterial smooth muscles. Am J Physiol 234:H542–H551

    Google Scholar 

  76. Burton AC (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34:619–642

    CAS  PubMed  Google Scholar 

  77. Nichols WW, O’Rourke MF (1998) Properties of the arterial wall: theory. In: Nichols WW, O’Rourke MF (eds) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Arnold, London, pp 54–72

    Google Scholar 

  78. Pepine CJ, Nichols WW, Curry JR, Conte CR (1979) Aortic input impedance during nitroprusside infusion. J Clin Invest 64:643–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Yin FCP, Guzman PA, Brin KP, Maughan WL, Brinker JA, Traill TA, Weiss JL, Weisfeldt ML (1983) Effect of nitroprusside on hydraulic vascular loads on the right and left ventricle of patients with heart failure. Circulation 67:1330–1339

    Article  CAS  PubMed  Google Scholar 

  80. Yaginuma T, Avolio A, O’Rourke MF (1986) Effect of glyceryl trinitrate on peripheral arteries alters left ventricular hydraulic load in man. Cardiovasc Res 20:153–160

    Article  CAS  PubMed  Google Scholar 

  81. Ross J (1976) Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 18:255–264

    Article  PubMed  Google Scholar 

  82. O’Rourke MF, Kelly RP (1993) Wave reflection in the systemic circulation and its implications in ventricular function. J Hypertens 11:327–337

    Article  PubMed  Google Scholar 

  83. Creager MA, Creager SJ (1994) Arterial baroreflex regulation of blood pressure in patients with congestive heart failure. J Am Coll Card 23:401–405

    Article  CAS  Google Scholar 

  84. Yamagishi M, Umeno T, Hongo Y, Tsutsui H, Goto Y, Nakatani S, Miyatake K (1997) Intravascular ultrasonic evidence for importance of plaque distribution (eccentric vs circumferential) in determining distensibility of the left anterior descending artery. Am J Cardiol 79:1596–1600

    Article  CAS  PubMed  Google Scholar 

  85. Loree H, Kamm R, Stringfellow R, Lee R (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71:850–858

    Article  CAS  PubMed  Google Scholar 

  86. Richardson P, Davies M, Born G (1989) Influence of plaque configuration and stress distribution on Assuring of coronary atherosclerotic plaques. Lancet 2:941–944

    Article  CAS  PubMed  Google Scholar 

  87. Bank AJ, Versluis A, Dodge SM, Douglas WH (2000) Atherosclerotic plaque rupture: a fatigue process? Med Hypotheses 55:480–484

    Article  CAS  PubMed  Google Scholar 

  88. Bank AJ (1997) Physiologic aspects of drug therapy and large artery elastic properties. Vase Med 2:44–50

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bank, A.J., Kaiser, D.R. (2002). Arterial Wall Mechanics. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics