Skip to main content

Atherosclerotic Lesions: Mechanical Properties

  • Chapter

Abstract

In the human body, breathing, blood circulation, and musculoskeletal activities are examples of mechanical processes, where force or energy is transferred from one place to another. Biomechanics is the application of the principles of mechanics to living systems [1]. Knowledge of biomechanics is important for understanding and predicting the behavior of a normal or pathological living system, just as knowledge of aerodynamics is important for understanding the flight of an airplane. Biomechanics research has led to discoveries and improvements of treatments in many medical fields, including cardiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fung YC (1981) Biomechanics: mechanical properties of living tissues, 1st edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  2. Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng 23:1–162

    CAS  PubMed  Google Scholar 

  3. Douglas JS, King SB, Roubin GS (1987) Influence of the methodology of percutaneous transluminal coronary angioplasty on restenosis. Am J Cardiol 60:29b–33b

    Article  Google Scholar 

  4. Roubin GS, Douglas JS, King SB III, Lin S, Hutchinson N, Thomas RG, Gruentzig AR (1988) Influence of balloon size on initial success, acute complications and restenosis after percutaneous transluminal coronary angioplasty. Circulation 78:557–565

    Article  CAS  PubMed  Google Scholar 

  5. Sarembock IJ, LaVeau PJ, Sigal SL, Timms I, Sussman J, Hauden-schild C, Ezekowitz E (1989) Influence of inflation pressure and balloon size on the development of intimai hyperplasia after balloon angioplasty. Circulation 80:1029–1040

    Article  CAS  PubMed  Google Scholar 

  6. Ellis SG, Roubin GS, King SB III, Douglas JS Jr, Cox WR (1989) Importance of stenosis morphology in the estimation of restenosis risk after elective percutaneous transluminal coronary angioplasty. Am J Cardiol 63:30–34

    Article  CAS  PubMed  Google Scholar 

  7. Schwartz RS, Holmes DR, Topol EJ (1992) The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J Am Coll Cardiol 20:1284–1293

    Article  CAS  PubMed  Google Scholar 

  8. Muller DWM, Ellis SG, Topol EJ (1992) Experimental models of coronary artery restenosis. J Am Coll Cardiol 19:418–432

    Article  CAS  PubMed  Google Scholar 

  9. Salunke NV, Topoleski LDT (1997) Biomechanics of atherosclerotic plaque. Crit Rev Bioeng 25:243–285

    CAS  Google Scholar 

  10. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92:1355–1374

    Article  CAS  PubMed  Google Scholar 

  11. Abele JE (1983) Technical considerations: physical properties of balloon catherters, inflation devices, and pressure measurement devices. In: Castaned-Zuniga WR (ed) Transluminal angioplasty. Thieme-Stratton, New York, pp 20–27

    Google Scholar 

  12. Abele JE (1980) Balloon catheters and transluminal dilatation: Technical considerations. Am J Roentgenol 135:901–906

    Article  CAS  Google Scholar 

  13. Castaneda-Zuniga WR, Formanek A, Tadavarthy M, Vlodaver Z, Edwards JE, Zollikofer C, Amplatz K (1980) The mechanisms of balloon angioplasty. Radiology 135:565–571

    CAS  PubMed  Google Scholar 

  14. Castaneda-Zuniga WR, Amplatz K, Laerum F, Formanek A, Sibley R, Edwards J, Vlodaver Z (1981) Mechanics of angioplasty: an experimental approach. Radiographics 1:1–14

    Google Scholar 

  15. Zarines CK, Lu C-T, Gewertz BL, Lyon RT, Rush DS, Glagov S, (1982) Arterial disruption and remodeling following balloon dilatation. Surgery 92:1086–1095

    Google Scholar 

  16. Wolf GL, LeVeen RF, Ring EJ (1984) Potential mechanisms of angioplasty. Cardiovasc Intervent Radiol 7:11–17

    Article  CAS  PubMed  Google Scholar 

  17. Faxon DG, Sanborn TA, Haudenschild CC (1987) Mechanisms of angioplasty and its relation to restenosis. Am J Cardiol 60:5b–9b

    Article  Google Scholar 

  18. Lyon TT, Zarines CK, Lu C-T, Glagov S (1987) Vessel, plaque and lumen morphology after transluminal balloon angioplasty — quantitative study in distended human arteries. Arteriosclerosis 7:306–314

    Article  CAS  PubMed  Google Scholar 

  19. Falk E (1992) Why do plaque rupture? Circulation 86:30–42

    Google Scholar 

  20. Kinney TB, Chin AK, Rurik GW, Finn JC, Shoor FM, Hayden WG, Fogarty TJ (1984) Transluminal angioplasty: a mechanical, pathological correlation of its physical mechanism. Radiology 153:85–89

    CAS  PubMed  Google Scholar 

  21. Chin AK, Kinney TB, Rurik GW, Shoor FM, Fogarty TJ (1984) A physical measurement of the mechanisms of transluminal angioplasty. Surgery 95:196–201

    CAS  PubMed  Google Scholar 

  22. Meier B, Gruentzig AR, Hollman J, Ischinger T, Bradford JM (1983) Does length or eccentricity of coronary stenoses influence the outcome of transluminal dilatation? Circulation 67:497–499

    Article  CAS  PubMed  Google Scholar 

  23. Kaltenbach M, Beyer J, Waltr S, Klepzig H, Schmidts L (1984) Prolonged application of pressure in transluminal coronary angioplasty. Cathet Cardiovasc Diagn 10:213–219

    Article  CAS  PubMed  Google Scholar 

  24. Jain A, Demer LL, Raizner AE, Hartley CJ, Lewis JM, Roberts R (1987) In vivo assessment of vascular dilatation during percutaneous transmural coronary angioplasty. Am J Cardiol 60:988–992

    Article  CAS  PubMed  Google Scholar 

  25. Falk E (1983) Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 50:127–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Davies MJ, Thomas AC (1985) Plaque Assuring — the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J 53:363–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Davies MJ (1990) A macro and micro view of coronary vascular insult in ischemic heart disease. Circulation 82:1138–1146

    Google Scholar 

  28. Ambrose JA, Winters SL, Arora RR (1986) Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 7:472–478

    Article  CAS  PubMed  Google Scholar 

  29. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V (1988) Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 12:56–62

    Article  CAS  PubMed  Google Scholar 

  30. Lendon CL, Davis MJ, Born GVR, Richardson PD (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87:87–90

    Article  CAS  PubMed  Google Scholar 

  31. Lendon CL, Briggs AD, Born GVR, Burleigh MC, Davies MJ (1988) Mechanical testing of the connective tissue in the search for determinants of atherosclerotic plaque cap rupture. Biochem Soc Transact 16:1032–1033

    Google Scholar 

  32. Born GVR, Richardson PD (1990) Mechanical properties of human atherosclerosis. In: Seager S, Newman W, Schaffer S (eds) Pathobiology of human atherosclerotic plaques. Springer, Berlin Heidelberg New York, pp 413–424

    Chapter  Google Scholar 

  33. Constantinides P (1966) Plaque fissures in human coronary thrombosis. J Atheroscler Res 6:1–17

    Article  Google Scholar 

  34. Aqel N, Ball R, Waldman H, Mitchinson M (1984) Monocyte origins of foam cells in human atherosclerotic plaques. Atherosclerosis 53:265–271

    Article  CAS  PubMed  Google Scholar 

  35. Lendon CL, Davies MJ, Richardson PD, Born GVR (1993) Testing of small connective tissue specimens for the determination of the mechanical behavior of atherosclerotic plaques. J Biomed Eng 15:27–33

    Article  CAS  PubMed  Google Scholar 

  36. Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71:850–858

    Article  CAS  PubMed  Google Scholar 

  37. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. Circulation 87:1179–1187

    Article  CAS  PubMed  Google Scholar 

  38. Lee RT, Grodzinsky AJ, Franf EH, Kamm RD, Schoen FJ (1991) Structure dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaque. Circulation 83:1764–1770

    Article  CAS  PubMed  Google Scholar 

  39. Lee RT, Richardson G, Loree HM, Grodzinsky AJ, Gharib SA, Schoen FJ, Pandian N (1992) Prediction of mechanical properties of human atherosclerotic tissue by high frequency intravascular ultrasound imaging. Arterioscler Thromb 12:1–5

    Article  CAS  PubMed  Google Scholar 

  40. Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT (1994) Static circumferential tangential modulus of human atherosclerotic tissue. J Biomech 27:195–204

    Article  CAS  PubMed  Google Scholar 

  41. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of the circumferential stress in ruptured and stable atherosclerotic lesion. Circulation 87:1179–1187

    Article  CAS  PubMed  Google Scholar 

  42. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb 14:230–234

    Article  CAS  PubMed  Google Scholar 

  43. Topoleski LDT, Salunke NV, Humphrey JD (1994) On the mechanical behavior of atherosclerotic plaques. Proceedings of 20th annual meeting of the Society for Biomaterials, p 18

    Google Scholar 

  44. Salunke NV, Topoleski LDT, Mergner WJ (1995) Biomechanical behavior of atherosclerotic plaques under cyclic loading. Proceedings of 21st annual meeting of the Society for Biomaterials, p 265

    Google Scholar 

  45. Salunke NV, Topoleski LDT, Mergner WJ (1996) Viscoelastic behavior of human atherosclerotic plaque. Transactions of the 5th World Bio-materials Congress, p 621

    Google Scholar 

  46. Topoleski LDT, Salunke NV, Humphrey JD, Mergner W (1997) Composition- and history-dependent radial compressive behavior of human atherosclerotic plaque. J Biomed Mat Res 35:117–127

    Article  CAS  Google Scholar 

  47. Topoleski LDT, Salunke NV (2000) A mechanical behavior of calcified plaque: a summary of compression and stress-relaxation experiments. Z Kardiol 89 [Suppl 2]:II/85–II91

    Article  PubMed  Google Scholar 

  48. Salunke NV, Topoleski LDT, Humphrey JD, Mergner WJ (2001) Compressive stress-relaxation of human atherosclerotic plaque. J Biomed Mat Res 55:236–241

    Article  CAS  Google Scholar 

  49. Keeny SM, Richardson PD (1987) Stress analysis of atherosclerotic arteries. IEEE 9th annual conference of the Engineering in Medicine and Biology Society, pp 1481–1485

    Google Scholar 

  50. Richardson PD, Davis MJ, Born GVR (1989) Influence of plaque configuration and stress distribution on Assuring of coronary atherosclerosis plaque. Lancet 2:941–944

    Article  CAS  PubMed  Google Scholar 

  51. Vito RP, Whang MC, Giddens DP, Zarins CK, Glagov S (1990) Stress analysis of the diseased arterial cross-section (Goldstein SA, ed). In: ASME Adv Bioeng 17:273–276

    Google Scholar 

  52. Hayashi K, Imai Y (1997) Tensile property of atheromatous plaque and an analysis of stress in atherosclerotic wall. J Biomech 30:573–579

    Article  CAS  PubMed  Google Scholar 

  53. Aoki T, Ku DN (1993) Collapse of diseased arteries with eccentric cross section. J Biomech 26:133–142

    Article  CAS  PubMed  Google Scholar 

  54. Lendon CL (1993) Mechanical and biochemical determinants of atherosclerotic plaque fissure. PhD thesis, Department of Pharmacology, King’s College, London, UK

    Google Scholar 

  55. Oh S, Kleinberger M, McElhaney JH (1992) A finite element analysis of balloon angioplasty. ASME Adv Bioeng 22:269–272

    Google Scholar 

  56. Oh S, Kleinberger M, McElhaney JH (1994) Finite-element analysis of balloon angioplasty. Med Biol Eng Comput 32:S108–S114

    Article  Google Scholar 

  57. Kleinberger M (1991) An experimental and theoretical study of arterial viscoelasticity: applications to transluminal angioplasty. PhD thesis, Department of Biomedical Engineering, Duke University

    Google Scholar 

  58. Castaneda-Zuniga WR, Sibley R, Amplatz K (1984) The pathologic basis of angioplasty. Angiology 35:195–205

    Article  CAS  PubMed  Google Scholar 

  59. Lee RT, Loree HM, Cheng GC, Lieberman EH, Jaramillo N, Schoen FJ (1993) Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: prediction of plaque fracture location. J Am Coll Cardiol 21:777–782

    Article  CAS  PubMed  Google Scholar 

  60. Beattie D, Xu C, Vito R, Glagov S, Whang MC (1998) Mechanical analysis of heterogeneous, atherosclerotic human aorta. J Biomech Eng 120:602–607

    Article  CAS  PubMed  Google Scholar 

  61. Veress AI, Cornhill JF, Hederick EE, Thomas JD (1998) Age-related development of atherosclerotic plaque stress: a population-based finite-element analysis. Coron Artery Dis 9:13–19

    Article  CAS  PubMed  Google Scholar 

  62. Veress AI, Vince DG, Anderson PM, Cornhill JF, Herderick EE, Klingensmith JD, Kuban BD, Greenberg NL, Thomas JD (2000) Vascular mechanics of the coronary artery. Z Kardiol 89 [Suppl 2]: II/92–II/100 additional reading on basic mechanics of materials

    Article  PubMed  Google Scholar 

  63. Beer FP, Johnston ER (1992) Mechanics of materials, 2nd edn. McGraw-Hill, New York, NY

    Google Scholar 

  64. Boresi AP, Schmidt RJ, Sidebottom OM (1993) Advanced mechanics of materials, 5th edn. Wiley, New York

    Google Scholar 

  65. Gere JM, Timoshenko SP (1997) Mechanics of materials, 4th edn. PWS Publishing, Boston, MA

    Google Scholar 

  66. Popov EP (1976) Mechanics of materials, 2nd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  67. Ruoff AL (1973) Materials science. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Topoleski, T. (2002). Atherosclerotic Lesions: Mechanical Properties. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics