Skip to main content

The Use of Sequence Analysis for Homozygote and Heterozygote Base Variation Discovery

  • Chapter
Molecular Genetic Epidemiology — A Laboratory Perspective

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

The fluorescent version of Sanger dideoxy-sequencing has been in use for 15 years for gene discovery and comparative sequencing projects. Only a decade ago, detection of single-base changes, additions or deletions within genes of a given species were only possible provided that the organism was haploid or that the change occurred in the homozygous state. High background and the presence of significant peak height variation within bases of a given sequence read made it difficult to recognize when a base substitution occurred in the heterozygous state. In addition, the lack of efficient software to search for and call hetero- and homozygote single nucleotide polymorphisms (SNPs) provided a major obstacle to scaling up sequencing-based mutation/polymorphism discovery. However, with the advent of new sequencing chemistries, more accurate sequencing enzymes and automation-amenable SNP-scoring software, it is now possible to detect homozygous or heterozygous sequence variations with a high degree of sensitivity and accuracy. Thus, the combination of improved “wet lab” technology and sophisticated bioinformatics tools now allows for a more rigorous quantitative means of determining heterozygous and homozygous sequence polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altshuler D, Pollara VJ, Cowles CR, Van Etten WT, Baldwin J, Linton L, Lander ES (2000) A SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516

    Article  PubMed  CAS  Google Scholar 

  • Blomeke B, Bennett WP, Harris CC, Shields PG (1997) Serum, plasma and paraffin-embedded tissues as sources of DNA for studying cancer susceptibility genes. Carcinogenesis 18:1271–1275

    Article  PubMed  CAS  Google Scholar 

  • Bonfield JK, Rada C, Staden R (1998) Automated detection of point mutations using fluorescent sequence trace subtraction. Nucleic Acids Res 26:3404–3409

    Article  PubMed  CAS  Google Scholar 

  • Bousse L, Cohen C, Nikiforov T, Chow A, Kopf-Sill AR, Dubrow R, Parce JW (2000) Electrokinetically controlled micro fluidic analysis systems. Annu Rev Biophys Biomol Struct 29:155–181

    Article  PubMed  CAS  Google Scholar 

  • Boysen C, Carlson C, Hood E, Hood L, Nickerson DA (1996). Identifying DNApolymorphisms in human TCRA/D variable genes by direct sequencing of PCR products. Imunogenetics 44:121–127

    CAS  Google Scholar 

  • Brouillette JA, Andrew JR, Venta PJ (2000) Estimate of nucleotide diversity in dogs with a pooland-sequence method. Mamm Genome 11:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Chadwick RB, Conrad MP, McGinnis MD, Johnston-Dow L, Spurgeon SL, Kronick MN (1996) Heterozygote and mutation detection by direct automated fluorescent DNAsequencing using a mutant Taq DNA polymerase. Biotechniques 20:676–683

    PubMed  CAS  Google Scholar 

  • Cotton RG (1993) Current methods of mutation detection. Mutat Res 285:125–144

    Article  PubMed  CAS  Google Scholar 

  • Cotton RG (1997) Slowlybut surely towards better scanning for mutations. Trends Genet 13:43–46

    Article  PubMed  CAS  Google Scholar 

  • Dolnik V (1999) DNA sequencing by capillary electrophoresis. J Biochem Biophys Methods 41:103–119

    Article  PubMed  CAS  Google Scholar 

  • Du Z, Hood L, Wilson RK (1993) Automated fluorescent DNA sequencing of polymerase chain reaction products. Methods Enzymol 218:104–121

    Article  PubMed  CAS  Google Scholar 

  • Engelstein M, Aldredge TJ, Madan D, Smith JH, Mao JI, Smith DR, Rice PW (1998) An efficient, automatable template preparation for high throughput sequencing. Microb Comp Genomics 3:237–241

    PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998), Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fangan BM, Dahlberg OJ, Deggerdal AH, Bosnes M, Larsen F (1999) Automated system for purification of dye-terminator sequencing products eliminates up-stream purification of templates. Biotechniques 26:980–983

    PubMed  CAS  Google Scholar 

  • Garg K, Green P, Nickerson DA (1999) Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Res 9:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Hardy GH (1908) Mendelian proportions in a mixed population. Science 28:49–50

    Article  PubMed  CAS  Google Scholar 

  • Hare MP, Palumbi SR (1999) The accuracy of heterozygous base calling from diploid sequence and resolution of haplotypes using allele-specific sequencing. Mol Ecol 8:1750–1752

    Article  PubMed  CAS  Google Scholar 

  • Humma LM, Farmerie WG, Wallace MR, Johnson JA (2000) Sequencing of beta 2-adrenoceptor gene PCR products using Taq BigDyeterminator chemistry results in inaccurate base calling. Biotechniques 29:962–964, 966, 968

    PubMed  CAS  Google Scholar 

  • Hunkapiller T, Kaiser RJ, Koop BF, Hood L (1991) Large-scale DNA sequencing. Curr Opin BiotechnoI 2:92–101

    Article  CAS  Google Scholar 

  • Innis MA, Myambo KB, Gelfand DH, Brow MA (1988) DNAsequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci USA 85:9436–9440

    Article  PubMed  CAS  Google Scholar 

  • Kaiser RJ, MacKellar SL, Vinayak RS, Sanders JZ, Saavedra RA, Hood L (1989) Specific-primerdirected DNA sequencing using automated fluorescence detection. Nucleic Acids Res 17: 6087–6102

    Article  PubMed  CAS  Google Scholar 

  • Kheterpal I, Scherer JR, Clark SM, Radhakrishnan A, Ju J, Ginther CL, Sensabaugh GF, Mathies RA (1996) DNAsequencing using a four-color confocal fluorescence capillary array scanner. Electrophoresis 17:1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Korch C, Drabkin H (1999a) Improved DNAsequencing accuracy and detection of heterozygous alleles using manganese citrate and different fluorescent dye terminators. Genome Res. 9:588–595

    PubMed  CAS  Google Scholar 

  • Korch C, Drabkin H (1999b) Manganese citrate improves base-calling accuracy in DNAsequencing react ions using rhodamine-based fluorescent dye-terminators. Nucleic Acids Res 27:1405–1407

    Article  PubMed  CAS  Google Scholar 

  • Koutny L, Schmalzing D, Salas-Solano O, EI-Difrawy S, Adourian A, Buonocore S, Abbey K, McEwan P, Matsudaira P, Ehrlich D (2000) Eight hundred-base sequencing in a microfabricated electrophoretic device. Anal Chern 72:3388–3391

    Article  CAS  Google Scholar 

  • Lai E, Riley J, Purvis I, Roses A (1998) A 4-Mb high-density single nucleotide polymorphismbased map around human APOE. Genomics 54:31–38

    Article  PubMed  CAS  Google Scholar 

  • Landegren U (1992) Detection of mutations in human DNA. Genet Anal Tech AppI 9:3–8

    CAS  Google Scholar 

  • Lasham A, Darlison MG (1993) Direct sequencing of lambda DNA from crude Iysates using an improved linear amplification technique. Mol Cell Probes 7:67–73

    Article  PubMed  CAS  Google Scholar 

  • Levedakou EN, Landegren U, Hood LE (1989) A strategy to study gene polymorphism by direct sequence analysis of cosmid clones and amplified genomic DNA. Biotechniques 7:438–442

    PubMed  CAS  Google Scholar 

  • Mackey K, Steinkamp A, Chomczynski P (1998) DNAextraction from small blood volumes and the processing of cellulose blood cards for use in polymerase chain reaction. Mol Biotechnol 9:1–5

    Article  PubMed  CAS  Google Scholar 

  • Marsh M, Tu O, Dolnik V, Roach D, Solomon N, Bechtol K, Smietana P, Wang L, Li X, Cartwright P, Marks A, Barker D, Harris D, Bashkin J (1997) High-throughput DNA sequencing on a capillary array electrophoresis system. J Capillary Electrophor 4: 83–89

    PubMed  CAS  Google Scholar 

  • Metzker ML, Lu J, Gibbs RA (1996) Electrophoretically uniform fluorescent dyes for automated DNA sequencing. Science 271:1420–1422

    Article  PubMed  CAS  Google Scholar 

  • Mullikin JC, Hunt SE, Cole CG, Mortimore BJ, Rice CM, Burton J, Matthews LH, Pavitt R, Plumb RW, Sims SK, Ainscough RM, Attwood J, Bailey JM, Barlow K, Bruskiewich RM, Butcher PN, Carter NP, Chen Y, Clee CM, Coggill PC, Davies J, Davies RM, Dawson E, Francis MD, Joy AA, LambIe RG, Langford CF, Macarthy J, Mall V, Moreland A, Overton-Larty EK, Ross MT, Smith LC, Steward CA, Sulston JE, Tinsley EJ, Turney KJ, Willey DL, Wilson GD, McMurray AA, Dunham I, Rogers J, Bentley DR (2000) An SNP map of human chromosome 22. Nature 407:516–520

    Article  PubMed  CAS  Google Scholar 

  • Mullis (1990a) The unusual origin of the polymerase chain reaction. SciAm 262:56–61, 64–65

    CAS  Google Scholar 

  • Mullis (1990b) Target amplificat ion for DNAanalysis by the polymerase chain reaction. Ann BioI Clin 48:579–582

    CAS  Google Scholar 

  • Murray V (1989) Improved double-stranded DNAsequencing using the linear polymerase cha in reaction. Nucleic Acids Res 17:88–89

    Google Scholar 

  • Nichols WC, Liepnieks JJ, McKusick VA, Benson MD (1989) Direct sequencing of the gene for Maryland/German familial amyloidotic polyneuropathy type II and genotyping by allelespecific enzymatic amplification. Genomics 5:535–540

    Article  PubMed  CAS  Google Scholar 

  • Nickerson DA, Tobe YO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25:2745–2751

    Article  PubMed  CAS  Google Scholar 

  • Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengard J, Salomaa V, Vartiainen E, Boerwinkle E, Sing CF (1998) DNA sequence diversity in a 9. 7-kb region of the human lipoprotein lipase gene. Nat Genet 19:233–240

    Article  PubMed  CAS  Google Scholar 

  • Nickerson DA, Taylor SL, Fullerton SM, Weiss KM, Clark AG, Stengard JH, Salomaa V, Boerwinkle E, Sing CF (2000) Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res 10:1532–1545

    Article  PubMed  CAS  Google Scholar 

  • Parker LT, Deng Q, Zakeri H, Carlson C, Nickerson DA, Kwok PY (1995) Peak height variat ions in automated sequencing of PCR products using Taq dye-terminator chemistry. Biotechniques 19:116–121

    PubMed  CAS  Google Scholar 

  • Parker LT, Zakeri H, Deng Q, Spurgeon S, Kwok PY, Nickerson DA (1996) AmpliTaq DNA polymerase, FS dye-terminator sequencing: analysis of peak height patterns. Biotechniques 21:694–699

    PubMed  CAS  Google Scholar 

  • Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Bayce-Iacino M (1999) Mining SNPs from EST databases. Genome Res 9:167–174

    PubMed  CAS  Google Scholar 

  • Richterich P (1998) Estimation of errors in “raw” DNAsequences: a validation study. Genome Res 8:251–259

    PubMed  CAS  Google Scholar 

  • Rieder MJ, Taylor SL, Tobe VO, Nickerson DA (1998) Automating the identification of DNAvariations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res 26:967–973

    Article  PubMed  CAS  Google Scholar 

  • Rieder MJ, Taylor SL, Clark AG, Nickerson DA (1999) Sequence variation in the human angiotensin converting enzyme. Nat Genet 22:59–62

    Article  PubMed  CAS  Google Scholar 

  • Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum BB, Lee LG, Spurgeon SL, Khan SH, Menchen SM, Heiner CR, Chen SM (1997) New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res 25: 4500–4504

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNAwith allele-specific oligonucleotide probes. Nature 324:163–166

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Lab Press, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNAsequencing with chain-terminat ing inh ibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Scherer JR, Kheterpal I, Radhakrishnan A, Ia WW, Mathies RA (1999) Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis. Electrophoresis 20:1508–1517

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Simpson PC, Scherer JR, Wexler D, Skibola C, Smith MT, Mathies RA (1999) Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal Chern 71:5354–5361

    Article  CAS  Google Scholar 

  • Swerdlow H, Jones BJ, Wittwer CT (1997) Fully automated DNAreaction and analysis in a fluidic capillary instrument. Anal Chern 69:848–855

    Article  CAS  Google Scholar 

  • Taillon-Miller P, Piernot EE, Kwok PY (1999) Efficient approach to unique single-nucleotide polymorphism discovery. Genome Res 9:499–505

    PubMed  CAS  Google Scholar 

  • Tan H, Yeung ES (1998) Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for high-throughput DNAsequencing. Anal Chern 70:4044–4053

    Article  CAS  Google Scholar 

  • Tamary H, Surrey S, Kirschmann H, Shalmon L, Zaizov R, Schwartz E, Rappaport EF (1994) Systematic use of automated fluorescence-based sequence analysis of amplified genomic DNAfor rapid detection of point mutations. Am J HematoI 46:127–133

    Article  CAS  Google Scholar 

  • Taylor GR (ed) (1997) Laboratory methods for the detection of mutations and polymorphisms in DNA. CRC Press, Boca Raton

    Google Scholar 

  • Wells WA (1998) The next chip-based revolution. Chern BioI 5:R115–R116

    Article  CAS  Google Scholar 

  • Whatley SD, Woolf JR, Elder GH (1999) Comparison of complementary and genomic DNA sequencing for the detection of mutations in the HMBSgene in British patients with acute intermittent porphyria: identification of 25 novel mutations. Hum Genet 104:505–510

    Article  PubMed  CAS  Google Scholar 

  • Wilson RK, Chen C, Avdalovic N, Burns J, Hood L (1990) Development of an automated procedure for fluorescent DNAsequencing. Genomics 6:624–634

    Article  Google Scholar 

  • Wittwer CT, Fillmore GC, Hillyard DR (1989) Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res 11:4353–4257

    Article  Google Scholar 

  • Wong C, Dowling CE, Saiki RK, Higuchi RG, Erlich HA, Kazazian HH Jr (1987) Characterization of beta-thalassaemia mutations using direct genomic sequencing of amplified single copy DNA. Nature 330:384–386

    Article  PubMed  CAS  Google Scholar 

  • Wrischnik LA, Higuchi RG, Stoneking M, Erlich HA, Arnheim N, Wilson AC (1987) Length mutations in human mitochondrial DNA: direct sequencing of enzymatically amplified DNA. Nucleic Acids Res 15:529–542

    Article  PubMed  CAS  Google Scholar 

  • Yager TD, Dunn JM, Stevens JK (1999) High-speed DNA sequencing in ultrathin slab gels. Curr Opin Biotech 8:107–113

    Article  Google Scholar 

  • Zakeri H, Amparo G, Chen SM, Spurgeon S, Kwok PY (1998) Peak height pattern in dichlororhodamine and energy transfer dye terminator sequencing. Biotechniques 25:406–410, 412–414

    PubMed  CAS  Google Scholar 

  • Zhou H, Miller AW, Sosic Z, Buchholz B, Barron AE, Kotler L, Karger BL (2000) DNA sequencing up to 1300 bases in two hours by capillary electrophoresis with mixed replaceable linear polyacrylamide solutions. Anal Chern 72:1045–1052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomann, HU., FitzGerald, M., Giese, H., Wall, K. (2002). The Use of Sequence Analysis for Homozygote and Heterozygote Base Variation Discovery. In: Day, I.N.M. (eds) Molecular Genetic Epidemiology — A Laboratory Perspective. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56207-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56207-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41387-5

  • Online ISBN: 978-3-642-56207-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics