Skip to main content

Multiplex Polymerase Chain Reaction and Immobilized Probes: Application to Cardiovascular Disease

  • Chapter
Molecular Genetic Epidemiology — A Laboratory Perspective

Part of the book series: Principles and Practice ((PRINCIPLES))

  • 394 Accesses

Abstract

Cardiovascular disease (CVD) is one of many common diseases for which there appear to be multiple genetic and environmental risk factors that interact with one another during the disease process. Among some families, causative mutations in certain genes have been ident ified, such as for familial hypertrophic cardiomyopathy, long-QT syndrome, and Marfan syndrome (reviewed by Maron et al. 1998); however, the association of these same genes with common forms of CVD is not fully understood. Extensive epidemiological studies have identified risk factors for disease in the general population, including age and gender, high serum cholesterol levels and hypertension, cigarette smoking, and physical inactivity (reviewed by Pasternak et al. 1996). Familial clustering (ten Kate et al. 1982) and twin studies (Marenberg et al. 1994) indicate that family history is an independent risk factor, particularly for individuals before the age of 55, and that this is not entirely explained by familial aggregation of hyperlipidemia, diabetes mellitus, obesity, and hypertension. Many premature CVD cases remain unexpl ained (Hoeg 1997), and unknown risk factors may be primarily genetic. These genetic risk factors may include the cumulative effects of common allelic variants; although individual variants may contribute only a modest increase in risk, combinations of particular alleles may confer significantly greater risk for disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson RD (1995) Thermostable DNApolymerases. In: Innis MA, Gelfand DH, Sninsky JJ (eds) PCR strategies. Academic Press, San Diego, pp 39–57

    Chapter  Google Scholar 

  • Birch DE, Kolmodin L, Wong J, Zangenberg GA, Zoccoli MA (1996) Simplified hot start PCR. Nature 381:445–446

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain JS, Chamberlain JR (1994) Optimization of multiplex PCRs. In: Mullis KB, Ferre F, Gibbs RA (eds) The polymerase chain reaction. Birkhäuser, Boston, pp 38–46

    Chapter  Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16:11141–11156

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Pallaud C, Grow MA, Scharf SJ, Erlich HA, Klitz W, Pullinger CR, Malloy MJ, Kane JP, Siest G, Visvikis S (1998) A multilocus genotyping assay for cardiovascular disease. Clin Chem Lab Med 36:561–566

    Article  PubMed  CAS  Google Scholar 

  • Chou Q, Russell M, Birch DE, Raymond J, Bloch W (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res 20: 1717–1723

    Article  PubMed  CAS  Google Scholar 

  • Goyette P, Frosst P, Rosenblatt DS, Rozen R (1995) Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet 56:1052–1059

    PubMed  CAS  Google Scholar 

  • Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23:504–511

    PubMed  CAS  Google Scholar 

  • Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367

    Article  PubMed  CAS  Google Scholar 

  • Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31:545–548

    PubMed  CAS  Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  • Hoeg JM (1997) Evaluating coronary heart disease risk. JAMA 277:1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Houlston RS, Snowden C, Green F, Alberti KGMM, Humphries SE (1989) Apolipoprotein (apo) E genotypes by polymerase chain reaction and allele-specific oligonucleotide probes: no detectable linkage disequilibrium between apo E and apo Cll. Hum Genet 83:364–368

    Article  PubMed  CAS  Google Scholar 

  • Hu FL, Gu Z, Kozich V, Kraus JP, Ramesh V, Shih VE (1993) Molecular basis of cystathionine β-synthase deficiency in pyridoxine responsive and nonresponsive homocystinuria. Hum Mol Genet 2:1857–1860

    Article  PubMed  CAS  Google Scholar 

  • Kebelmann-Betzing C, Seeger K, Dragon S, Schmitt G, Möricke A, Schild TA, Henze G, Beyermann B (1998) Advantages of a new Taq DNA polymerase in multiplex PCR and time-release PCR. Biotechniques 24:154–158

    PubMed  CAS  Google Scholar 

  • Kellogg DE, Rybalkin I, Chen S, Mukhamedova N, Vlasik T, Siebert PD, Chenchik A (1994) TaqStart antibody: “hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. Biotechniques 16:1134–1137

    PubMed  CAS  Google Scholar 

  • Landre PA, Gelfand DH, Watson RM (1995) The use of cosolvents to enhance amplification by the polymerase chain reaction. In: Innis MA, Gelfand DH, Sninsky JJ (eds) PCR strategies. Academic Press, San Diego, pp 3–16

    Chapter  Google Scholar 

  • Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH (1989) Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem 264:6427–6437

    PubMed  CAS  Google Scholar 

  • Lawyer FC, Stoffel S, Saiki RK, Chang S-Y, Landre PA, Abramson RD, Gelfand DH (1993) Highlevel expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl 2:275–287

    Article  PubMed  CAS  Google Scholar 

  • Li H, Cui X, Arnheim N (1990) Direct electrophoretic detection of the allelic state of single DNA molecules in human sperm by using the polymerase chain reaction. Proc Natl Acad Sci USA 87:4580–4584

    Article  PubMed  CAS  Google Scholar 

  • Longo MC, Berninger MS, Hartley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93:125–128

    Article  PubMed  CAS  Google Scholar 

  • Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330:1041–1046

    Article  PubMed  CAS  Google Scholar 

  • Maron BJ, Moller JH, Seidman CE, Vincent GM, Dietz HC, Moss AJ, Towbin JA, Sondheimer HM, Pyeritz RE, McGee G, Epstein AE (1998) Impact of laboratory molecular diagnosis on contemporary diagnostic criteria for genetically transmitted cardiovascular diseases: hypertrophic cardiomyopathy, long-QT syndrome, and Marfan syndrome. Circulation 98:1460–1471

    Article  CAS  Google Scholar 

  • McConlogue L, Brow MAD, Innis MA (1988) Structure-independent DNA amplification by PCR using 7-deaza-2′-deoxyguanosine. Nucleic Acids Res 16:9869

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNAfrom human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  PubMed  CAS  Google Scholar 

  • Pasternak RC, Grundy SM, Levy D, Thompson PD (1996) 27th Bethesda Conference: matching the intensity of risk factor management with the hazard for coronary disease events. Task Force 3. Spectrum of risk factors for coronary heart disease. J Am Coli Cardiol 27:978–990

    Article  CAS  Google Scholar 

  • Pomp D, Medrano JF (1991) Organic solvents as facilitators of polymerase chain reaction. Biotechniques 10:58–59

    PubMed  CAS  Google Scholar 

  • Rees WA, Yager TD, Korte J, von Hippel PH (1993) Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32:137–144

    Article  PubMed  CAS  Google Scholar 

  • Richards B, Skoletsky J, Shuber AP, Balfour R, Stern RC, Dorkin HL, Parad RB, Witt D, Klinger KW (1993) Multiplex PCR amplification from the CFTR gene using DNA prepared from buccal brushes/swabs. Hum Mol Genet 2:159–163

    Article  PubMed  CAS  Google Scholar 

  • Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eisenberg PR, Miletich JP (1995) Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 332:912–917

    Article  PubMed  CAS  Google Scholar 

  • Rychlik W, Spencer WJ, Rhoads RE (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res 18:6409–6412

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Erlich HA (1998) Detect ion of mutations by hybridization with sequence-specific oligonucleotide probes. In: Cotton RGH, Edkins E, Forrest S (eds) Mutation detection: a practical approach. Oxford University Press, Oxford, pp 113–129

    Google Scholar 

  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324:163–166

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Walsh PS, Levenson CH, Erlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 86:6230–6234

    Article  PubMed  CAS  Google Scholar 

  • Santoro MM, Liu Y, Khan SMA, Hou L-X, Bolen DW (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 31:5278–5283

    Article  PubMed  CAS  Google Scholar 

  • Schafer AJ, Hawkings JR (1998) DNA variation and the future of human genetics. Nat Biotechnol 16:33–39

    Article  PubMed  CAS  Google Scholar 

  • ten Kate LP, Boman H, Daiger SP, Motulsky AG (1982) Familial aggregation of coronary heart disease and its relation to known genetic risk factors. Am J Cardiol 50:945–953

    Article  PubMed  Google Scholar 

  • Thein SL, Wallace RB (1986) The use of synthetic oligonucleotides as specific hybrid ization probes in the diagnosis of genet ic disorders. In: Davies KE (ed) Human genetic diseases. IRL Press, Oxford, pp33–50

    Google Scholar 

  • Tung CH, Rudolph MI, Stein S (1991) Preparation of oligonucleotide-peptide conjugates. Bioconjug Chem 2:464–465

    Article  PubMed  CAS  Google Scholar 

  • Turner SL, Jenkins FJ (1995) Use of deoxyinosine in PCR to improve amplification of GC-rich DNA. Biotechniques 19:48–52

    PubMed  CAS  Google Scholar 

  • Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K (1979) Hybridization of synthetic oligodeoxyribonucleotides to Φχ174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6:3543–3557

    Article  PubMed  CAS  Google Scholar 

  • Walsh PS, Erlich HA, Higuchi R (1992) Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appll:241–250

    Google Scholar 

  • Weiss J, Zucht H-D, Forssmann W-G (1994) Amplification of gene fragments with very high G/C content: c7dGTP and the problem of visualizing the amplification products. PCR Methods Appl 4:124–125

    Article  PubMed  CAS  Google Scholar 

  • Weissensteiner T, Lanchbury JS (1996) Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques 21:1102–1108

    PubMed  CAS  Google Scholar 

  • Zangenberg G, Saiki RK, Reynolds R (1999) Multiplex PCR: optimization guidelines. In: Innis MA, Gelfand DH, Sninsky JJ (eds) PCR applications: protocols for functional genomics. Academic Press, San Diego, pp 73–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, S. (2003). Multiplex Polymerase Chain Reaction and Immobilized Probes: Application to Cardiovascular Disease. In: Day, I.N.M. (eds) Molecular Genetic Epidemiology — A Laboratory Perspective. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56207-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56207-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41387-5

  • Online ISBN: 978-3-642-56207-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics