Advertisement

Minisatellite and Microsatellite DNA Fingerprinting

  • Paul G. Debenham
Part of the Principles and Practice book series (PRINCIPLES)

Abstract

Most DNA-based inventions receive much media attention, but have little to show in the end by way of practical outcome. One major exception is DNAfingerprinting and the subsequent variations in mini/microsatellite applications. The discovery of minisatellite DNA fingerprinting by A. Jeffreys in 1985 (Jeffreys et al. 1985a, Jeffreys et al. 1985b) in one brief step revolutionised the way forensic science and police casework is performed, and became the norm for the determination of relationships for both humans and animals.

Keywords

Short Tandem Repeat Short Tandem Repeat Locus Forensic Casework Short Tandem Repeat Profile Mini Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowling AT, Eggleston-Stott ML, Byrns G, Clark RS, Dileanis S, Wictum E (1997) Validation of micro satellite markers for routine horse parentage testing. Anim Genet 28:247–252PubMedCrossRefGoogle Scholar
  2. Budowle B, Charkraborty R, Guisti AW, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus DlS80 by PCR followed by high resolution PAGE. Am J Hum Genet 48:137–144PubMedGoogle Scholar
  3. Burke T, Bruford MW (1987) DNA fingerprinting in birds. Nature 327:149–152PubMedCrossRefGoogle Scholar
  4. Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic applications of DNA fingerprints. Nature 318: 577–579PubMedCrossRefGoogle Scholar
  5. Home Office (1988) DNA profiling in immigration casework: report of a pilot trial by the Home Office and Foreign and Commonwealth Office. Home Office, LondonGoogle Scholar
  6. Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable “minisatellite” regions in human DNA. Nature 314:67–73PubMedCrossRefGoogle Scholar
  7. Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific fingerprints of human DNA. Nature 316:76–79PubMedCrossRefGoogle Scholar
  8. Jeffreys AJ, Brookfield JFY, Semeonoff RS (1985c) Posit ive identification of an immigration testcase using human DNA fingerprints. Nature 317:818–819PubMedCrossRefGoogle Scholar
  9. Jeffreys AJ, Wilson V, Thein SL, Weatherall DJ, Ponder BAJ (1986) DNA fingerprints and segregation analysis of multiple markers in human pedigrees. Am J Hum Genet 39:11–24PubMedGoogle Scholar
  10. Jeffreys AJ, Wilson V, Kelly R, Taylor BA, Bulfield G (1987) Mouse DNA fingerprints: analysis of chromosome localization and germ-line stability of hypervariable loci in recombinant inbred strains. Nucleic Acids Res 15:2823–2836PubMedCrossRefGoogle Scholar
  11. Jeffreys AJ, Wilson V, Neumann R, Keyte J (1988) Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res 16:10953–10971PubMedCrossRefGoogle Scholar
  12. Jeffreys AI, Turner M, Debenham PG (1991a) The efficiency of multilocus DNA fingerprint probes for individualization and establishment of family relationships, determined from extensive casework. Am J Hum Genet 48:824–840PubMedGoogle Scholar
  13. Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG (1991b) Minisatellite repeat coding as a digital DNA approach to DNA typing. Nature 354:204–209PubMedCrossRefGoogle Scholar
  14. Kimpton C, Fisher D, Watson S, Adams M, Urquhart A, Lygo J, Gill P (1994) Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. Int J Legal Med 106:302–311PubMedCrossRefGoogle Scholar
  15. Lander E (1989) DNA fingerprinting on trial. Nature 339:501–505PubMedCrossRefGoogle Scholar
  16. Lander E, Budowle B (1994) DNA fingerprinting dispute laid to rest. Nature 371:735–738PubMedCrossRefGoogle Scholar
  17. Litt M, Hauge X, Sharma V (1993) Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. Biotechniques 15:280–284PubMedGoogle Scholar
  18. Min GL, Hibbin J, Arthur C, Apperley J, Jeffreys A, Goldman J (1988) Use of minisatellite DNA probes for recognition and characterization of relapse after allogenic bone marrow transplantation. Br J Haematol 68:195–201PubMedCrossRefGoogle Scholar
  19. Monckton DG, Tamaki K, MacLeod A, Neil DL, Jeffreys AJ (1993) Allele-specific MVR-PCR analysis at minisatellite DIS8. Hum Mol Genet 2:513–519PubMedCrossRefGoogle Scholar
  20. Morton DB, Yaxley RE, Patel I, Jeffreys AJ, Howes SJ, Debenham PG (1987) Use of DNA fingerprinting analysis in identification of this sire. Vet Rec 121:592–593PubMedGoogle Scholar
  21. Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262:36–43CrossRefGoogle Scholar
  22. Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622PubMedCrossRefGoogle Scholar
  23. Nyborn H, Schaal BA (1990) DNA “fingerprints” applied to paternity analysis in apples. Theor Appl Genet 79:763–768Google Scholar
  24. Peters C, Schneider V, Epplen JT, Poche H (1991) Individual-specific DNA fingerprints in man using the oligonucleotide probe (GTGls/ (CACls. Eur J Clin Chem Clin Biochem 29:321–325PubMedGoogle Scholar
  25. Saiki RK, Walsh PS, Levenson CH, Erlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 86:6230–6234PubMedCrossRefGoogle Scholar
  26. Smith JC, Newton CR, Alves A, Anwar R, Jenner D, Markham AF (1990) Highly polymorphic minisatellite DNA probes. Further evaluation for individual identification and paternity testing. J Forensic Sci Soc 30:3–18PubMedCrossRefGoogle Scholar
  27. Sparkes R, Kimpton C, Watson S, Oldroyd N, Clayton T, Barnett L, Arnold J, Thompson C, Hale R, Chapman J, Urquhart A, Gill P (1996) The validation of a 7-locus multiplex STR test for use in forensic casework (1). Int J Legal Med 109:186–194PubMedCrossRefGoogle Scholar
  28. Stedman R (1983) Blood group frequencies of immigrant and indigenous populations from south east England. J Forensic Sci Soc 25:95–134CrossRefGoogle Scholar
  29. Taggart JB, Ferguson A (1990) Minisatellite DNA fingerprints of salmon fishes. Anim Genet 21:377–389PubMedCrossRefGoogle Scholar
  30. Thacker J, Webb MBF, Debenham PG (1988) Fingerprinting cell lines: use of human hypervariable DNA probes to characterize mammalian cell cultures. Somat Cell Mol Genet 14:519–525PubMedCrossRefGoogle Scholar
  31. Thomson JA, Pilotti V, Stevens P, Ayres KL, Debenham PG (1999) Validation of short tandem repeat analysis for the investigation of cases of disputed paternity. Forensic Sci Int 100:1–16PubMedCrossRefGoogle Scholar
  32. Thomson JA, Ayres KL, Pilotti V, Barrett MN, Walker JIH, Debenham PG (2000) Validation of multiplex STR systems for the investigation of parentage and other familial relationships. In: Sensabaugh GF, Lincoln PJ, Olaisen B (eds) Progress in forensic genetics. Elsevier Science, Amsterdam, pp 374–376Google Scholar
  33. Vassart G, Georges M, Monsieur R, Brocas H, Lequarre AS, Christophe D (1987) A sequence in M13phage detects hypervariable minisatellites cloned from human DNA. Science 235:683–684PubMedCrossRefGoogle Scholar
  34. Walsh PS, Metzger DA, Higuchi R (1992) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513Google Scholar
  35. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  36. Wong Z, Wilson V, Patel I, Povey S, Jeffreys AJ (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet 51:269–288PubMedCrossRefGoogle Scholar
  37. Wyman A, White R (1980) A highly polymorphic locus in human DNA. Proc Natl Acad Sci USA 77:6754–6758PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Paul G. Debenham
    • 1
  1. 1.Laboratory of the Government ChemistLGC BuildingTeddington, MiddlesexUK

Personalised recommendations