Skip to main content

The Role of Multiresolution in Mining Massive Image Datasets

  • Conference paper
Multiscale and Multiresolution Methods

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 20))

  • 805 Accesses

Abstract

Scientists are collecting data from observations and simulations at an ever increasing pace. In order to extract useful information from these massive datasets, they are turning to data mining techniques as an attractive solution approach. Data mining is an iterative and interactive process that consists of data pre-processing and pattern recognition. Pre-processing the raw data in order to transform it into a form suitable for pattern recognition is an important and timeconsuming first step. In this paper, we discuss the crucial role multiresolution techniques can play in the pre-processing of massive datasets. Using both simulated and real images, we describe our work in de-noising image data using wavelet-based multiresolution techniques. Our initial experiences show that a judicious choice of wavelet transforms, threshold selection methods, and threshold application schemes can effectively reduce the noise in the data without a significant loss of the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anant, K., Dowla, F., Rodrigue, G.: Detection of the electrocardiogram P-wave using wavelet analysis. Proc. of the SPIE 2242 (1994) 744–749.

    Article  Google Scholar 

  2. Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31 (1983) 532–540.

    Article  Google Scholar 

  3. Chan, T., Zhou, H.: Adaptive ENO-wavelet transforms for discontinuous functions. UCLA Technical Report 99-21 (1999) June.

    Google Scholar 

  4. Chan, T., Zhou, H.: Optimal construction of wavelet coefficients using total variation regularization in image compression. UCLA Technical Report CAM 00-27 (2000) July.

    Google Scholar 

  5. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. on Pure and Applied Mathematics 41 (1988) 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  6. Daubechies, I.: Ten Lectures on Wavelets. SIAM (1992).

    Google Scholar 

  7. Donoho, D. L., Johnstone, I. M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81 (1994) 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  8. Donoho, D. L., Johnstone, I. M.: Adapting to unknown smoothness via wavelet shrinkage. JASA 90 (1995) 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM Special Issue on Data Mining 39 (1996) 27–34.

    Google Scholar 

  10. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge, Mass. (1996).

    Google Scholar 

  11. FBI Fingerprint Image Compression Standard Web Page: http://www.c3.lanl.gov/~brislawn/FBI/FBI.html.

    Google Scholar 

  12. Fodor, I. K., Cantü-Paz, E., Kamath, C., Tang, N. A.: Finding bent-double radio galaxies: a case study in data mining. Computing Science and Statistics 23 (2000).

    Google Scholar 

  13. Fodor, I. K., Kamath, C: On de-noising images using wavelet-based statistical techniques. Manuscript in preparation (2001).

    Google Scholar 

  14. JPEG 2000 Standard Web Page: http://www.jpeg.org.

    Google Scholar 

  15. LeMoigne, J.: Parallel registration of multi-sensor remotely sensed imagery using wavelet coefficients. Proc. SPIE Wavelet Applications Conference (1994) 432–443.

    Google Scholar 

  16. Li, H., Manjunath, B. S., Mitra, S. K.: Multisensor image fusion using the wavelet transform. Proc. First International Conference on Image Processing (1994) 51–55.

    Google Scholar 

  17. Ma, W. Y., Manjunath, B. S.: A comparison of wavelet transform features for texture image annotation. Proc. Second International Conference on Image Processing (1995) 256–259.

    Google Scholar 

  18. Malladi, R., Sethian, J.: A unified approach to noise removal, image enhancement, and shape recovery. IEEE Trans. Image Processing 5 (1996) 1154–1168.

    Article  Google Scholar 

  19. Mallat, S.: Multiresolution approximation and wavelet orthonormal bases of L2. Trans. American Mathematical Society 315 (1989) 69–87.

    MathSciNet  MATH  Google Scholar 

  20. Meng, Q., Thompson, W., Flachs, G., Jordan, J.: Wavelet transform application in human face recognition. Proc. of the SPIE 3068 (1997) 124–135.

    Article  Google Scholar 

  21. MPEG-4 Standard Web Page: http://www.cselt.it/mpeg/.

    Google Scholar 

  22. Ogden, R. T.: Essential Wavelets for Statistical Applications and Data Analysis. Birkhäuser (1997).

    Google Scholar 

  23. Sapphire Web Page: Sapphire: Large-scale Data Mining and Pattern Recognition. http://www.llnl.gov/casc/sapphire.

    Google Scholar 

  24. Starck, J.-L., Murtagh, F., Bijaoui, A.: Image and Data Analysis: The Multiscale Approach. Cambridge University Press (1998).

    Google Scholar 

  25. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press (1996).

    Google Scholar 

  26. Uhl, A.: Wavelets: adaptive and parallel methods in image coding and signal processing. PhD thesis, University of Salzburg (1996).

    Google Scholar 

  27. Umbaugh, S.: Computer Vision and Image Processing: A Practical Approach using CVIPtools. Prentice Hall (1998).

    Google Scholar 

  28. Unser M., Aldroubi, A.: A review of wavelets in biomédical applications. Proc. of the IEEE 84 (1996) 626–638.

    Article  Google Scholar 

  29. Vidakovic, B.: Statistical Modeling by Wavelets. Wiley Series in Probability and Statistics. John Wiley & Sons (1999).

    Google Scholar 

  30. Weeks, A.: Fundamentals of Electronic Image Processing. SPIE Optical Engineering Press and IEEE Press (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fodor, I.K., Kamath, C. (2002). The Role of Multiresolution in Mining Massive Image Datasets. In: Barth, T.J., Chan, T., Haimes, R. (eds) Multiscale and Multiresolution Methods. Lecture Notes in Computational Science and Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56205-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56205-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42420-8

  • Online ISBN: 978-3-642-56205-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics