Skip to main content

Beamlets and Multiscale Image Analysis

  • Conference paper
Multiscale and Multiresolution Methods

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 20))

Abstract

We describe a framework for multiscale image analysis in which line segments play a role analogous to the role played by points in wavelet analysis.

The framework has five key components. The beamlet dictionary is a dyadically-organized collection of line segments, occupying a range of dyadic locations and scales, and occurring at a range of orientations. The beamlet transform of an image f(x, y) is the collection of integrals of f over each segment in the beamlet dictionary; the resulting information is stored in a beamlet pyramid. The beamlet graph is the graph structure with pixel corners as vertices and beamlets as edges; a path through this graph corresponds to a polygon in the original image. By exploiting the first four components of the beamlet framework, we can formulate beamlet-based algorithms which are able to identify and extract beamlets and chains of beamlets with special properties.

In this paper we describe a four-level hierarchy of beamlet algorithms. The first level consists of simple procedures which ignore the structure of the beamlet pyramid and beamlet graph; the second level exploits only the parent-child dependence between scales; the third level incorporates collinearity and co-curvity relationships; and the fourth level allows global optimization over the full space of polygons in an image.

These algorithms can be shown in practice to have suprisingly powerful and apparently unprecedented capabilities, for example in detection of very faint curves in very noisy data.

We compare this framework with important antecedents in image processing (Brandt and Dym; Horn and collaborators; Götze and Druckenmiller) and in geometric measure theory (Jones; David and Semmes; and Lerman).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.isye.gatech.edu/~xiaoming/beamlab.

    Google Scholar 

  2. http://www-stat.stanford.edu/~wavelab.

    Google Scholar 

  3. H. Abramowicz, D. Horn, U. Naftali, C. Sahar-Pikielny. (1996) An Orientation Selective Neural Network and its Application to Cosmic Muon Identification Nucl. Instr. Meth. Phys. Res. A 378 (1996) 305–311.

    Google Scholar 

  4. H. Abramowicz, D. Horn. U. Naftali, C. Sahar-Pikielny. (1997) An Orientation Selective Neural Network for Pattern Identification in Particle Detectors in Advances in Neural Information Processing Systems 9 eds. M. C. Mozer, M. J. Jordan and T. Petsche, MIT Press 1997, pp. 925–931.

    Google Scholar 

  5. J. R. Bond, L. Kofman and D. Pogosyan. How filaments of galaxies are woven into the cosmic web. Nature, 380(6575):603–606, April 1996.

    Article  Google Scholar 

  6. P. J. Burt, and E. H. Adelson, “The Laplacian pyramid as a compact image code”, IEEE Transactions on Communications, 9:(4), pp. 532–540, 1983.

    Article  Google Scholar 

  7. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.

    Google Scholar 

  8. A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7:1129–1159, 1995.

    Article  Google Scholar 

  9. D. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific, 1995.

    Google Scholar 

  10. M. L. Brady. A fast discrete approximation algorithm for the Radon transform. SIAM J. Computing, 27(1):107–19, February 1998.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Brandt and J. Dym. Fast calculation of multiple line integrals. SIAM J. Sci. Comput., 20(4): 1417–1429, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Sharon, A. Brandt, and R Basri. Fast multiscale image segmentation. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 70–7, 2000.

    Google Scholar 

  13. R. W. Buccigrossi and E. P. Simoncelli. Image compression via joint statistical characterization in the wavelet domain. IEEE Transactions on Image Processing, 8(12):1688–1701, 1999.

    Google Scholar 

  14. E. Candès and D. Donoho. Ridgelets: the key to high-dimensional intermittency? Phil. Trans. R. Soc. Lond. A., 357:2495–2509, 1999.

    Article  MATH  Google Scholar 

  15. E. J. Candès and D. L. Donoho. Curvelets: a surprisingly effective nonadaptive representation of objects with edges. In Albert Cohen, Christophe Rabut, and Larry L. Schumaker, editors, Curve and Surface Fitting: Saint-Malo 1999. Vanderbilt University Press, Nashville, TN., ISBN 0-8265-1357-3, 2000.

    Google Scholar 

  16. S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. J. Cox, S. B. Rao, and Y. Zhong. “Ratio Regions”: A Technique for Image Segmentation, Proc. ICPR’ 96, 557–564.

    Google Scholar 

  18. G. B. Dantzig, W. O. Blattner, and M. R. Rao. Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem. Theory of Graphs, pages 77–83, 1966.

    Google Scholar 

  19. G. David and S. Semmes. Analysis of and on uniformly rectifiable sets, volume 38 of Math. Surveys and Monographs. Amer. Math. Soc., 1993.

    Google Scholar 

  20. D. L. Donoho. Sparse components analysis and optimal atomic decomposition. Technical report, Department of Statistics, Stanford University, To appear, Constructive Approximation, 1998.

    Google Scholar 

  21. D. Donoho and X. Huo. Beamlet pyramids: A new form of multiresolution analysis, suited for extracting lines, curves, and objects from very noisy image data. In Proceedings of SPIE, volume 4119, July 2000.

    Google Scholar 

  22. D. L. Donoho. Wedgelets: Nearly minimax estimation of edges. Annals of Statistics, 27(3):859–897, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Dror, H. Abramowicz and D. Horn (1998) Vertex identification in High Energy Physics Experiments. NIPS*98.

    Google Scholar 

  24. A. Fairall. Large-Scale Structures in the Universe. Chichester, West Sussex, 1998.

    Google Scholar 

  25. D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am., 4:2379–2394, 1987.

    Article  Google Scholar 

  26. D. J. Field. Scale-invariance and self-similar ‘wavelet’ transforms: an analysis of natural scenes and mammalian visual systems. In M. Farge, et al. eds., Wavelets, Fractals and Fourier Transforms. Oxford Univ. Press, 1993.

    Google Scholar 

  27. D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual system: evidence for a local “association field”. Vision Research, 33(2): 173–93, Jan. 1993.

    Article  Google Scholar 

  28. D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos. Dynamic programming for detecting, tracking and matching deformable contours. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(3):294–302, 1995.

    Article  Google Scholar 

  29. W. A. Götze and H. J. Druckmüller. A fast digital radon transform — an efficient means for evaluating the hough transform. Pattern Recognition, 28(12):1985–1992, 1995.

    Article  MathSciNet  Google Scholar 

  30. X. Huo. Sparse Image Representation via Combined Transforms. PhD thesis, Stanford, August 1999.

    Google Scholar 

  31. I. Jermyn and H. Ishikawa. Globally optimal regions and boundaries. In 7th ICCV, Kerkyra, Greece, September 1999.

    Google Scholar 

  32. P. W. Jones. Rectifiable sets and the traveling salesman problem. Inventiones Mathematicae, 102:1–15, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 23:309–311, 1978.

    MathSciNet  MATH  Google Scholar 

  34. R. M. Karp and J. B. Orlin. Parametric shortest path algorithms with an application to cyclic staffing. Discrete Applied Mathematics, 3:37–45, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Kovacs and B. Julesz. A closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentation. Proc. Natl. Acad. Sci. USA, 90:7495–7497, August 1993.

    Article  Google Scholar 

  36. G. Lerman (2000) Geometric Transcriptions of Sets and Their Applications to Data Analysis. Ph.D. Thesis, Yale University Department of Mathematics.

    Google Scholar 

  37. T. Leung and J. Malik. Contour continuity in region based image segmentation. In 5th. Euro. Conf. Computer Vision, Prieburg, Germany, June 1998.

    Google Scholar 

  38. D. Marr. Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco, 1982.

    Google Scholar 

  39. J. D. Mendola, A. Dale, B. Fischl, A. K. Liu, and R. G. H. Tootell. The representation of illusory and real contours in human cortical visual areas revealed by functional mri. J. of Neuroscience, 19(19):8560–8572, Oct. 1999.

    Google Scholar 

  40. Y. Meyer. Review of “An Introduction to Wavelets” and “Ten Lectures on Wavelets”. Bulletin Amer Math Soc., 28(2), April 1993.

    Google Scholar 

  41. Y. Meyer. Wavelets. Algorithms & Applications. Society for Industrial and Applied Mathematics (SIAM), 1993

    Google Scholar 

  42. U. Montanari. On the optimal detection of curves in noisy pictures. Communications of the ACM, 14(5):335–45, 1971.

    Article  MATH  Google Scholar 

  43. B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607–609, 1996.

    Article  Google Scholar 

  44. D. A. Pollen and S. F. Ronner. Phase relationships between adjacent cells in the visual cortex. Science, vol. 212, pp. 1409–1411, 1981.

    Article  Google Scholar 

  45. D. L. Ruderman. The statistics of natural images. Network, 5(4):517–548, 1993.

    Article  Google Scholar 

  46. A. Said and W. A. Pearlman, “A new, fast and efficient image codec based on set partitioning in hierachical trees,” IEEE Tr. on Circuits and Systems for Video Techn., Vol. 6, pp. 243–250, June 1996.

    Article  Google Scholar 

  47. B. S. Sathyaprakash, V. Sahni, and S. F. Shandarin. Emergence of filamentary structure in cosmological gravitational clustering. Astrophysical Journal, Letters, 462(1):L5–8, 1996.

    Article  Google Scholar 

  48. J.-L. Starck, F. Murtagh, and A. Bijaoui. Image Processing and Data Analysis. Cambridge, 1998.

    Google Scholar 

  49. J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with simple cells in the primary visual cortex. Proc. R. Soc. Lond. B, 265:359–366, 1998.

    Article  Google Scholar 

  50. B. Wandell. Foundations of Vision. Sinauer Assoc., 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Donoho, D.L., Huo, X. (2002). Beamlets and Multiscale Image Analysis. In: Barth, T.J., Chan, T., Haimes, R. (eds) Multiscale and Multiresolution Methods. Lecture Notes in Computational Science and Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56205-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56205-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42420-8

  • Online ISBN: 978-3-642-56205-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics