Skip to main content

Projection Generated Homogenization

  • Conference paper
Multiscale Problems in Science and Technology

Abstract

Homogenization is a class of analytical techniques for approximating multiscale differential equations. The number of scales are reduced and the resulting equations are easier to analyze or numerically approximate. The classical homogenization technique is based on asymptotic expansions. We shall introduce a homogenization procedure based on projections of differential or discrete approximation operators onto coarser subspaces. The projection procedure is quite general and we give a presentation of a framework in Hilbert spaces. We apply the framework to a simple differential equation with oscillatory coefficients and to two discrete problems. One is wavelet based numerical homogenization and the other a multiscale finite element method.3

The first author was partially supported by the NSF grant 0012151000. The second author was partially supported by the NSF KDI grant DMS-9872890.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersson, U., Engquist, B., Ledfeit, G., Runborg, O. (1999) A contribution to wavelet-based subgrid modeling. Appl. Comput. Harmon. Anal. 7, 151–164

    Article  MathSciNet  MATH  Google Scholar 

  2. Axelsson, O. (1994) Iterative Solution Methods. Cambridge University Press

    Google Scholar 

  3. Bensoussan, A., Lions, J.-L., Papanicolaou, G. (1978) Asymptotic Analysis for Periodic Structures. North-Holland

    Google Scholar 

  4. Beylkin, G., Brewster, M. (1995) A multiresolution strategy for numerical homogenization. Appl. Comput. Harmon. Anal. 2, 327–349

    Article  MathSciNet  MATH  Google Scholar 

  5. Beylkin, G., Coifman, R., Rokhlin, V. (1991) Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math. 44, 141–183

    Article  MathSciNet  MATH  Google Scholar 

  6. Beylkin, G., Coult, N. (1998) A multiresolution strategy for reduction of elliptic PDEs and eigenvalue problems. Appl. Comput. Harmon. Anal. 5, 129–155

    Article  MathSciNet  MATH  Google Scholar 

  7. Beylkin, G., Dunn, J., Gines, D. L. (1998) LU factorization of non-standard forms and direct multiresolution solvers. Appl. Comput. Harmon. Anal. 5, 156–201

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T., Mathew, T. (1992) The interface probing technique in domain decomposition. SIAM J. Matrix Anal. Appl. 13(1), 212–238

    Article  MathSciNet  MATH  Google Scholar 

  9. Conçus, C, Golub, G. H., Meurant, G. (1985) Block preconditioning for the conjugate gradient method. SIAM J. Sci. Stat. Comp. 6, 220–252

    Article  MATH  Google Scholar 

  10. Daubechies, I. (1991) Ten Lectures on Wavelets. SIAM

    Google Scholar 

  11. Dorobantu, M., Engquist, B. (1998) Wavelet-based numerical homogenization. SIAM J. Numer. Anal. 35(2), 540–559

    Article  MathSciNet  MATH  Google Scholar 

  12. Engquist, B., Runborg, O. (2001) Wavelet-Based Numerical Homogenization with Applications. To appear.

    Google Scholar 

  13. Gilbert, A. C. (1998) A comparison of multiresolution and classical onedimensional homogenization schemes. Appl. Comput. Harmon. Anal. 5(1), 1–35

    Article  MathSciNet  MATH  Google Scholar 

  14. Hou, T. Y., Wu, X.-H. (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou, T. Y., Wu, X.-H., Cai, Z. (1999) Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68(227), 913–943

    Article  MathSciNet  MATH  Google Scholar 

  16. Hughes, T. J. R. (1995) Multiscale phenomena: Green’s functions, the dirichlet-to neumann formulation, subgrid, scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. 127, 387–401

    Article  MathSciNet  MATH  Google Scholar 

  17. Hughes, T. J. R., Feijöo, G. R., Mazzei, L., Quicy, J.-B. (1998) The variational multiscale method — a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166, 3–24

    Article  MathSciNet  MATH  Google Scholar 

  18. Knapek, S. (1999) Mat rix-dependent multigrid-homogenization for diffusion problems. SIAM J. Sci. Stat. Comp. 20(2), 515–533

    Article  MathSciNet  MATH  Google Scholar 

  19. Leon, D. D. (2000) Wavelet Operators Applied to Multigrid Methods. PhD thesis, Department of Mathematics, UCLA

    Google Scholar 

  20. Neuss, N. (1995) Homogenisierung und Mehrgitter. PhD thesis, Fakultät Mathematik Universität Heidelberg

    Google Scholar 

  21. Neuss, N., Jäger, W., Wittum, G. (2001) Homogenization and multigrid. Computing 66(1), 1–26

    Article  MathSciNet  MATH  Google Scholar 

  22. Steinberg, B. Z., McCoy, J. J., Mirotznik, M. (2000) A multiresolution approach to homogenization and effective modal analysis of complex boundary value problems. SIAM J. Appl. Math. 60(3), 939–966

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engquist, B., Runborg, O. (2002). Projection Generated Homogenization. In: Antonić, N., van Duijn, C.J., Jäger, W., Mikelić, A. (eds) Multiscale Problems in Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56200-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56200-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43584-6

  • Online ISBN: 978-3-642-56200-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics