Advertisement

CathI — catheter instruction system

  • Ulrike Höfer
  • Thomas Langen
  • Justin Nziki
  • Frank Zeitler
  • Jürgen Hesser
  • Ulrich Müller
  • Wolfram Voelker
  • Reinhard Männer

Abstract

Over the last few years the number of minimally invasive cardiological interventions has increased enormously. The equipment has been improved steadily but the education still follows the traditional master-apprentice model. CathI is a new simulation system that allows to train not only the hand-eye co-ordination but also the entire handling with the equipment. The trainee controls everything like in reality with original but insignificantly modified instruments, e.g. guide wire, syringe, control unit for the C-arms, and a foot pedal. According to the real procedure in a catheter laboratory he supervises his activities by using several fluoroscopic screens. The system is based on PC technology (Pentium III, 500 MHz) and generates a frame rate of > 12.5 calculated projections/second.

Keywords

Cardiological interventions simulation angioplasty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ikuta K., Takeichi M., Namiki T.: Virtual Endoscope System with Force Sensation. MICCAI (1998), Cambridge, MA, pp. 293-304Google Scholar
  2. 2.
    McCarthy A.D., Hollands R.J.: A commercially viable virtual reality knee athroscopy training system. Medicine Meets Virtual Reality 6, (1998) San Diego, USA, pp. 302-308Google Scholar
  3. 3.
    Kühnapfel U., Cakmak H.K., Maaß H.: 3D Modeling for Endoscopic Surgery Proc. IEEE Symposium on Simulation, (1999) Delft, NL, pp. 22-32Google Scholar
  4. 4.
    van Walsum T., Zuiderveld K.J., Chin-A-Woeng J.W.C., Eikelboom B.C.,Viergever M.A.: CT-based simulation of fluoroscopy and DAS for endovascular surgery training. Proceedings CVRMed-MRCAS, Lecture Notes in Computer Science, Vol. 1205 (1997), Springer-Verlag, Berlin, pp. 273-282Google Scholar
  5. 5.
    Klein L.W.: Computerized Patient Simulation to Train the Next Generation of Interventional Cardiologists: Can Virtual Reality Take the Place of Real Life? Catheterization and Cardiovascular Interventions 51 (2000), pp. 528PubMedCrossRefGoogle Scholar
  6. 6.
    Dawxon S.L., Cotin S., Meglan D., Shaffer D.W., Ferrell M.A.: Designing a Computer-Based Simulator for Interventional Cariology Training. Catheterization and Cardiovascular Interventions 51 (2000), pp. 522-527CrossRefGoogle Scholar
  7. 7.
    Wang Y., Chui C., Lim H., Cai Y.: Real-time Interactive Simulator for Percutaneous Coronary Revascularization Procedures. Journal of Computer Aided Surgery Vol. 3, No 5 (1999), pp. 211-227CrossRefGoogle Scholar
  8. 8.
    O’Brien J., Ezquerra N.: Automated Segmentation of Coronary Vessels in Angiographic Image Sequences Utilizing Temporal, Spatial and Structural Constraints. In Proceedings of the Third Conference on Visualization in Biomedical Computing. SPIE, (1994) p. 25Google Scholar
  9. 9.
    Hoffmann K.R., Doi D., Chen S.-H. J., Chan H.-P: Automated Tracking and Computer Reproduction of Vessels in DSA Images. INVESTIGATIVE RADIOLOGY Vol. 25, No.10, (1990) pp. 1069-1075PubMedCrossRefGoogle Scholar
  10. 10.
    Sarwal A., Dhawan A.P.: Three dimensional reconstruction of coronary arteries from two views. Computer Methods and Programs in Biomedicine Vol. 65 (2001) pp. 25-43PubMedCrossRefGoogle Scholar
  11. 11.
    Hartley R., Zissermann A.: Multiple View Geometry, Cambridge University Press, (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ulrike Höfer
    • 1
  • Thomas Langen
    • 1
  • Justin Nziki
    • 1
  • Frank Zeitler
  • Jürgen Hesser
    • 1
  • Ulrich Müller
    • 1
  • Wolfram Voelker
    • 2
  • Reinhard Männer
  1. 1.Institute for Computational MedicineUniversität MannheimMannheimGermany
  2. 2.Medizinische Universität WürzburgWürzburgGermany

Personalised recommendations