Three-dimensional computer-aided diagnosis schemes for classification of benign and malignant pulmonary nodules

  • Y. Kawata
  • N. Niki
  • H. Ohmatsu
  • M. Kusumoto
  • R. Kakinuma
  • K. Mori
  • H. Nishiyama
  • K. Eguchi
  • M. Kaneko
  • N. Moriyama
Conference paper

Abstract

We present an example-based assisting approach for classifying pulmonary nodules in 3-D thoracic CT images. The technique represents the internal and surrounding structures of the nodule by means of the distribution pattern of CT density and 3-D curvature indexes. When given an unknown nodule image, the images of lesions with known diagnoses (e.g. malignant vs. benign) are retrieved from a 3-D nodule image database. The malignant likelihood of the unknown case is estimated by the difference between the representation patterns of the unknown case and the retrieved lesions. In the present study,we adopt the Mahalanobis distance as the difference measure and then, explore the feasibility of the classification based on patterns of similar lesion images.

Keywords

CAD pulmonary nodule classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kaneko, K. Eguchi, H. Ohmatsu, R. Kakinuma, T. Naruke, K. Suemasu, N. Moriyama “Peripheral lung cancer: Screening and detection with low-dose spiral CT versus radiography”, Radiology, vol.201, pp.798-802, 1996.Google Scholar
  2. 2.
    Y. Rui, T.S. Huang, S.-F. Chang, “Image retrieval: current techniques, promising directions and open issues”, Journal of Communication and Image Representation, vol. 10, pp.39-62, 1999.Google Scholar
  3. 3.
    Y. Kawata, N. Niki, H. Ohmatsu, R. Kakinuma, K. Eguchi, M. Kaneko, N. Moriyama, “Quantitative surface characterization of pulmonary nodules based on thin-section CT images”, IEEE Trans. Nuclear Science, vol. 45, pp.2132-2138, 1998.Google Scholar
  4. 4.
    J.-P, Thirion and A. Gourdon, “Computing the differential characteristics of isointensity surfaces”, Computer Vision and Image Understanding, vol.6, pp. 190-202, 1995.Google Scholar
  5. 5.
    J. J. Koenderink and A. J. V. Doom, “Surface shape and curvature scales”, Image and Vision Computing, vol. 10, pp.557-565, 1992.Google Scholar
  6. 6.
    Y. Kawata, N. Niki, H. Ohmatsu, “Curvature based internal structure analysis of pulmonary nodules using thoracic 3-D CT images”, IEICE Trans., voU-83-D-II, pp.209-218, 2000.Google Scholar
  7. 7.
    T. Saito and J. Toriwaki, “Euclidean distance transformation for three-dimensional digital images”, Trans. IEICE, vol.J76-D-II, pp.445-453, 1993.Google Scholar
  8. 8.
    C. Xu and J.L. Prince, “Snake, shape, and gradient vector flow”, IEEE Trans. Image Processing, vol. 7, pp.359-369, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Y. Kawata
    • 1
  • N. Niki
    • 2
  • H. Ohmatsu
    • 2
  • M. Kusumoto
    • 3
  • R. Kakinuma
    • 2
  • K. Mori
    • 4
  • H. Nishiyama
    • 5
  • K. Eguchi
    • 6
  • M. Kaneko
    • 3
  • N. Moriyama
    • 3
  1. 1.Dept. of Optical ScienceUniv. of TokushimaJapan
  2. 2.National Cancer Center Hospital EastJapan
  3. 3.National Cancer Center HospitalJapan
  4. 4.Tochigi Cancer CenterJapan
  5. 5.The Social Health Insurance Medical CenterJapan
  6. 6.Univ. of TokaiJapan

Personalised recommendations