Skip to main content

Non-Continuum Processes

  • Chapter
  • 404 Accesses

Abstract

This chapter examines the theory and applications of the interactions between a low density gas and microparticles when the gas cannot be considered to be a continuum. In the past two decades significant progress has been made in the relevant theory and in the experimental tools needed to complement that theory. The combination of theory and experiment is important, for measurements are needed to determine the characteristics of mass, momentum and energy exchange between gas molecules and ’engineering’ surfaces. In his development of the dynamical theory of gases Maxwell (1860a,b) recognized the difficulty of specifying the appropriate boundary conditions at a surface, and he modeled the molecular interaction as intermediate between two limiting cases: (i) specular reflection of molecules and (ii) accommodation of the molecules to the surface such that they leave following a law of random distribution of directions independent of the velocity of the impinging molecules. He introduced the concept of the accommodation coefficient as the fraction of molecules that accommodate to the surface. Thus, if αm is the fraction of molecules that fully accommodate to the surface, (l-αm is the fraction that undergo specular reflection.

The rise of the kinetic theory was of a gradual nature, and it is difficult to mention any time at which the theory may be said to have arisen, or any single name to whom honor of its establishment is due. Sir J. H. Jeans (1916)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen MD, Raabe OG (1982) Re-evaluation of Millikan’s oil drop data for the motion of small particles in air. J Aerosol Sci 13: 537–547

    Article  Google Scholar 

  • Allen MD, Raabe OG (1985) Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci Technol 4: 269–286

    Article  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. 1. small amplitude process in charged and neutral one-component systems. Phys Rev 94: 511–525

    Article  MATH  Google Scholar 

  • Boltzmann L (1868) Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Wien Ber 58: 517–560

    Google Scholar 

  • Bogoliubov NN (1946) Problems of a dynamical theory in statistical physics. State Technical Press, Moscow

    Google Scholar 

  • Born M, Green HS (1946) A general kinetic theory of liquids i. the molecular distribution functions. Proc Roy Soc London A 188: 10–18

    Article  MathSciNet  MATH  Google Scholar 

  • Budzinski W, Sitarksi M (1985) Kinetic theory of droplet evaporation rate from the solution of the Boltzmann equation. J Colloid Interface Sci 106: 168–174

    Article  Google Scholar 

  • Cercignani C, Pagani CD (1968) Flow of a rarefied gas past an axisymmetric body. I. General remarks. Phys Fluids 11: 1395–1399

    Article  MATH  Google Scholar 

  • Cercignani C, Pagani CD, Bassanini P (1968) Flow of a rarefied gas past an axisymmetric body ii. case of a sphere. Phys Fluids 11: 1399–14..

    Article  MATH  Google Scholar 

  • Cercignani C (1988) The Boltzmann equation and its applications. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Chapman S (1916a) Law of distribution of velocities, and theory of viscosity and thermal conduction in a non-uniform simple monatomic gas. Phil Trans Roy Soc A 216: 279–348

    Article  Google Scholar 

  • Chapman S (1916b) Kinetic theory of simple and composite monatomic gases. Proc Roy Soc 93: 1–20

    Article  Google Scholar 

  • Chapman S (1917) The kinetic theory of a composite monatomic gas. part ii.—a composite monatomic gas: diffusion, viscosity, and thermal conduction. Phil Trans Roy Soc A 217: 115–197

    Article  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases. 3rd edn. Cambridge University Press, New York

    Google Scholar 

  • Chang R, Davis EJ (1976) Knudsen aerosol evaporation. J Colloid Interface Sci 54: 352–363

    Article  Google Scholar 

  • Chernyak VG, Margilevskiy AY (1989) The kinetic theory of heat and mass transfer from a spherical particle in a rarefied gas. Int J Heat Mass Transfer 32: 2127–2134

    Article  MATH  Google Scholar 

  • Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc Roy Soc 83: 357–365

    Article  MATH  Google Scholar 

  • Davies CN (1945) Definitive equations for the fluid resistance of spheres. Proc Phys Soc 57: 259–270

    Article  Google Scholar 

  • Davis EJ, Ray AK, Chang R (1978) Experimental determination of aerosol evaporation rates at large and small Knudsen numbers. AIChE Symp Ser No 175, 74: 190–203

    Google Scholar 

  • Davis EJ, Ray AK (1978) Submicron droplet evaporation in the continuum and non-continuum regimes. J Aerosol Sci 9: 411–422

    Article  Google Scholar 

  • Enskog D (1917) Kinetische Theorie der Vorgänge in massing verdumten Gasen. Ph.D. Thesis, University of Uppsala, Sweden

    Google Scholar 

  • Epstein PS (1924) On the resistance experienced by spheres in their motion through gases. Phys Rev 23: 710–733

    Article  Google Scholar 

  • Friedlander SK (1977) Smoke, dust and haze. Wiley, New York

    Google Scholar 

  • Fuchs NA (1934) Über die Verdampfungsgeschwindigkeit kleiner Tröpfchen in einer Gasatmosphäre. Phys Z Sowjet 6: 225–243

    Google Scholar 

  • Fuchs NA, Sutugin AG (1970) Highly dispersed aerosols. Ann Arbor Science Publishers, Ann Arbor, Michigan

    Google Scholar 

  • Fukuta N, Walter LA (1970) Kinetics of hydrometeor growth from a vapor-spherical model. J Atmos Sci 27: 1160–1172

    Article  Google Scholar 

  • Gelfand I.M, Fomin SV (1963) Calculus of variations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gombosi TI (1994) Gaskinetic Theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grad H (1949) On the kinetic theory of rarefied gases. Comm Pure Appl Math. 2: 331–407

    Article  MathSciNet  MATH  Google Scholar 

  • Grad H (1958) Principles of the kinetic theory of gases. In: Flügge S (ed.) Handbuch der Physik, Vol 12, Springer, Berlin

    Google Scholar 

  • Hidy GM, Brock JR (1970) The dynamics of aerocolloidal systems. Pergamon Press, Oxford

    Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  • Hutchins DK, Harper MH, Felder RL (1995) Slip correction measurements for solid spherical particles by modulated dynamic light scattering. Aerosol Sci Technol 22: 202–218

    Article  Google Scholar 

  • Jeans JH (1916) The dynamical theory of gases. 2nd ed., Cambridge University Press, London. (Also see the 4th edn. Dover, New York, 1954)

    MATH  Google Scholar 

  • Kirkwood J (1946) The statistical mechanical theory of transport processes i. general theory. J Chem Phys 14: 180–201

    Article  Google Scholar 

  • Knudsen M (1909a) Laws of molecular and internal viscous flow of gases through tubes. Ann Phys. 28: 75–130

    Article  MATH  Google Scholar 

  • Knudsen M (1909b) Molecular flow of gases through apertures and effusion. Ann Phys 28: 999–1016

    Article  MATH  Google Scholar 

  • Knudsen M, Weber S (1911) Resistance to motion of small spheres. Ann Phys 36: 981–984

    Article  Google Scholar 

  • Knudsen M (1952) The kinetic theory of gases: some modern aspects. Wiley, New York

    Google Scholar 

  • Kogan MN (1969) Rarefied Gas Dynamics. Plenum Press, New York

    Google Scholar 

  • Kundt A, Warburg E (1875a) On friction and heat conduction in rarefied gases. Phil Mag 50: 53–62

    Google Scholar 

  • Kundt A, Warburg E. (1875b) Über Reibung und Wärmeleitung verdünnter Gase. Ann Phys 155: 337–365

    Article  Google Scholar 

  • Kundt A, Warburg E (1875c) Über Reibung und Wärmeleitung verdünnter Gase. Ann Phys Chem 156: 17–211

    Google Scholar 

  • Ingebrethsen BJ (1986) Aerosol studies of cigarette smoke. Recent Adv Tobacco Sci 12: 54–142

    Google Scholar 

  • Langevin MP (1905) Une formule fondamentale de théorie cinétique. Ann Chim Phys 5: 245–288

    MATH  Google Scholar 

  • Lea KC, Loyalka SK (1982) Motion of a sphere in a rarefied gas. Phys Fluids 25: 1550–1557

    Article  MATH  Google Scholar 

  • Li W, Davis EJ (1996) Aerosol evaporation in the transition regime. Aerosol Sci Technol 24: 11–21

    Google Scholar 

  • Liboff RL (1990) Kinetic theory classical, quantum, and relativistic descriptions. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lorentz HA (1887) On the equilibrium of kinetic energy among gas-molecules. Wien Ber 95: 115.

    Google Scholar 

  • Loyalka SK (1971) Motion of aerosols in non-uniform gases I. J Chem Phys 55: 1–4

    Article  Google Scholar 

  • Loyalka SK (1973) Condensation on a spherical droplet. J Chem Phys 58: 354–356

    Article  Google Scholar 

  • Loyalka SK (1981) Strong evaporation in half-space: integral transport solutions for onedimensional BGK model. Phys Fluids 24: 2154–2158

    Article  MATH  Google Scholar 

  • Loyalka SK (1983) Mechanics of aerosols in nuclear reactor safety: a review. Prog Nucl Energy 12: 1–56

    Article  Google Scholar 

  • Loyalka SK (1992a) Motion of a sphere in a gas: numerical solution of the linearized Boltzmann equation. Phys Fluids 4:1049–1056

    Article  MATH  Google Scholar 

  • Loyalka SK (1992b) Temperature jump and thermal creep slip: rigid sphere gas. Phys Fluids A 1: 403–408

    Article  Google Scholar 

  • Loyalka SK, Park JW (1988) Aerosol growth by condensation: a generalization of Mason’s formula. J Colloid Interface Sci 125: 712–716

    Article  Google Scholar 

  • Loyalka SK, Hamoodi SA, Tompson RV (1989a) Isothermal condensation on a plane surface Phys Fluids A 1: 384–388

    Google Scholar 

  • Loyalka SK, Hamoodi SA, Tompson RV (1989b) Isothermal condensation on a spherical particle. Phys Fluids A 1: 358–362

    Article  MATH  Google Scholar 

  • Margilevskii AE, Chernyak VG (1985) Evaporation and condensation of a droplet in a vapor-gas medium at arbitrary Knudsen numbers. Izv AN USSR, Mech Zhidk I Gasa 4: 131–137

    Google Scholar 

  • Mattauch J (1925) Resistance of small particles through a gas. Z Phys 32: 439–472

    Article  Google Scholar 

  • Maxwell JC (1859) On the dynamical theory of gases. Brit Assoc Adv Sci Report, p.9

    Google Scholar 

  • Maxwell JC (1860a) Illustrations of the dynamical theory of gases.—Part I. on the motions and collisions of perfectly elastic spheres. Phil Mag 19: 19–32, and (1890) The Papers of James Clerk Maxwell. Vol. 1, pp 377-409, Cambridge University Press, Cambridge

    Google Scholar 

  • Maxwell JC (1860b) Illustrations of the dynamical theory of gases.—Part II. On the process of diffusion of two or more kinds of moving particles among one another. Phil Mag 20: 21–37, and (1890) The Scientific Papers of James Clerk Maxwell. Vol. 2, pp 26-78, Cambridge University Press, Cambridge

    Google Scholar 

  • Millikan RA (1910) Isolation of an ion, measurement of its charge, and correction to Stokes’ Law. Science 32: 436–448

    Article  Google Scholar 

  • Millikan RA (1911) The isolation of an ion, a precision measurement of its charge, and the correction of Stokes’s Law. Phys Rev 32: 349–397

    Google Scholar 

  • Millikan RA (1923a) Coefficients of slip in gases and the law of reflection of molecules from the surfaces of solids and liquids. Phys Rev 21: 217–238

    Article  Google Scholar 

  • Millikan RA (1923b) The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys Rev 22: 1–23

    Article  Google Scholar 

  • Mönch G (1933) Zum Widerstandsgesetz kleiner Kugeln in Luft. Phys Z 34: 77–79

    Google Scholar 

  • Monchick L, Blackemore R (1988) A variation calculation of the rate of evaporation of small droplets. J Aerosol Sci 19: 273–286

    Article  Google Scholar 

  • Monchick L, Reiss H (1954) Studies of evaporation of small drops. J Chem Phys 22: 831–836

    Article  Google Scholar 

  • Nowakowski B, Popielawski J (1988) Nonisothermal condensation on spherical aerosol particles from the Grad solution of the Boltzmann equation. J Colloid Interface Sci 122: 299–307

    Article  Google Scholar 

  • Onishi Y (1984) The behavior of a vapor gas around its spherical droplet. J Phys Soc Jpn 53: 178–186

    Article  Google Scholar 

  • Onishi Y, Sone Y (1979) Kinetic theory of slightly strong evaporation and condensation — hydrodynamic equation and slip boundary condition for finite Reynolds number. J Phys Soc Jpn 47: 1676–1685

    Article  MathSciNet  Google Scholar 

  • Pazooki N, Loyalka SK (1988) Heat transfer in a rarefied polyatomic gas. II. Sphere. Intl J Heat Mass Transfer 31: 977–985

    Article  MATH  Google Scholar 

  • Prigogine I (1963) Non equilibrium statistical mechanics. Wiley-Interscience, New York

    Google Scholar 

  • Qu X, Davis EJ (2001) Droplet evaporation and condensation in the near-continuum regime. J Aerosol Sci 32: 861–875

    Article  Google Scholar 

  • Qu X, Davis EJ, Swanson BD (2001) Non-isothermal droplet evaporation and condensation in the near-continuum regime. J Aerosol Sci 32: 1315–1339

    Article  Google Scholar 

  • Ray AK, Lee J, Tilley HL (1988) Direct measurements of evaporation rates of single droplets at large Knudsen numbers. Langmuir 4: 631–637

    Article  Google Scholar 

  • Sahni DC (1966) The effect of a black sphere on the flux distribution in an infinite moderator. J Nucl Energy 20: 915–920

    Google Scholar 

  • Sampson RE, Springer GS (1970) Condensation on and evaporation from droplets by a moment method. J Fluid Mech 36: 577–584

    Article  Google Scholar 

  • Shankar PN (1970) A kinetic theory of steady condensation. J Fluid Mech 40: 395–400

    Article  Google Scholar 

  • Sitarski M, Nowakowski B (1979) Condensation rate of trace vapor on Knudsen aerosols from the solution of the Boltzmann equation. J Colloid Interface Sci 72: 113–122

    Article  Google Scholar 

  • Sitarski M (1979) Brownian condensation of trace vapor knudsen aerosols. Polish J Chem 53: 665–671

    Google Scholar 

  • Sitarski M (1980) Condensation kinetics of trace vapor on submicron aerosols by Monte Carlo Simulation. J Colloid Interface Sci 73: 152–161

    Article  Google Scholar 

  • Smoluchowski M von (1898) Über den Temperatursprung bei Wärmeleitung in Gasen. Sitzber Mathematisch-Naturwissenschaftlichen Classe Akad Wiss Wien A107: 304–329

    Google Scholar 

  • Smoluchowski M von (1910a) Zur kinetischen Theorie der Transpiration und Diffusion verdünnter Gase. Ann Phys 33: 1559–1570

    Article  Google Scholar 

  • Smoluchowski M von (1910b) Theory of transpiration, diffusion, and thermal conduction in rarefied gases. Acad Sci Cracovie Bull 7a: 295–312

    Google Scholar 

  • Sone Y, Aoki K (1977) Forces on a spherical particle in a slightly rarefied gas. In: JL Potter (ed.), Progress Astro Aero, vol. 51, Rarefied Gas Dynamics, AIAA, New York, pp. 417–433

    Google Scholar 

  • Sone Y, Onishi Y (1978) Kinetic theory of evaporation and condensation—hydrodynamic equation and slip boundary condition. J Phys Soc Jpn 44: 1981–1994

    Article  Google Scholar 

  • Tompson RV, Loyalka SK (1986) Condensational growth of a spherical droplet: free molecule limit. J Aerosol Sci 17: 723–728

    Article  Google Scholar 

  • Tompson RV, Loyalka SK (1988) Condensation on a spherical droplet—III. J Aerosol Sci 19: 287–293

    Article  Google Scholar 

  • Waldmann L (1959) The force of a non-homogeneous gas on small suspended spheres. Z Naturforsch 14a: 589–599

    MathSciNet  Google Scholar 

  • Wagner PE (1980) Aerosol growth by condensation. In: Marlow WH (ed) Particle Microphysics II. Springer-Verlag, Berlin

    Google Scholar 

  • Williams MMR, Loyalka SK (1991) Aerosol science theory and practice. Pergamon Press, Oxford

    Google Scholar 

  • Young JB (1991) The condensation and evaporation of liquid droplets in a pure vapour at arbitrary Knudsen number. Int J Heat Mass Transfer 34: 1649–1661

    Article  Google Scholar 

  • Yvon J (1935) La theorie statistique des fluides et I’equation d’etat: actualités scientifiques et industrielles. Hermann, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Davis, E.J., Schweiger, G. (2002). Non-Continuum Processes. In: The Airborne Microparticle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56152-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56152-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62806-1

  • Online ISBN: 978-3-642-56152-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics