Skip to main content

High Occupancy Effects and Condensation Phenomena in Semiconductor Microcavities and Bulk Semiconductors

  • Chapter
Nano-Optoelectronics

Abstract

Semiconductor microcavities are micron scale photonic structures in which quantum wells are embedded within a high finesse Fabry-Perot cavity, the whole structure being prepared by high precision, modern crystal growth techniques [1]. In such structures vertical confinement of both excitons in the quantum wells and of light within the Fabry-Perot cavity results in strong and controllable light-matter interactions unachievable in quantum wells or bulk semiconductors. This control has opened up a new field of exciton-polariton physics, where key features of the interacting exciton-photon system can be tailored by sample design. Most importantly for the physics described here, the dispersion curves of the coupled two-dimensional (2D) exciton-photon modes, exciton-polaritons (termed cavity polaritons), differ from those of their bulk analogues since the confinement of light results in a finite energy at k=0. This property, combined with the controllable dispersion and the extremely low density of polariton states [1], has recently allowed a variety of new phenomena to be observed, including final state stimulation and a new condensed phase with macroscopic coherence, which have the potential to lead to new devices including very low threshold optical parametric oscillators and a coherent light source based on stimulated polariton scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For reviews see M.S. Skolnick, T.A. Fisher, D.M. Whittaker: Semicond. Sci. Technol. 13, 645 (1998) and G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch: Rev. Mod. Phys. 71, 1591 (1999)

    Article  ADS  Google Scholar 

  2. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa: Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  3. Such macroscopic occupations for bosons underly the phenomenon of Bose-Einstein condensation, and of photon stimulation in a laser

    Google Scholar 

  4. R.M. Stevenson, V.N. Astratov, M.S. Skolnick, D.M. Whittaker, M. Emam-Ismail, A.I. Tartakovskii, P.G. Savvidis, J.J. Baumberg, J.S. Roberts: Phys. Rev. Lett. 85, 3680 (2000)

    Article  ADS  Google Scholar 

  5. P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts: Phys. Rev. Lett. 84, 1547 (2000)

    Article  ADS  Google Scholar 

  6. J.J. Baumberg, P.G. Savvidis, R.M. Stevenson, A.I. Tartakovskii, M.S. Skolnick, D.M. Whittaker, J.S. Roberts: Phys. Rev. B 62, R16247 (2000)

    Article  ADS  Google Scholar 

  7. P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts: Phys. Rev. B 62, R13278 (2000)

    Article  ADS  Google Scholar 

  8. A.I. Tartakovskii, D.N. Krizhanovskii, V.D. Kulakovskii: Phys. Rev. B 62, R13298 (2000)

    Article  ADS  Google Scholar 

  9. R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, M. Begems: Phys. Rev. Lett. 85, 2793 (2000)

    Article  ADS  Google Scholar 

  10. E. Koteles: ‘Investigation of Exciton-Polariton Dispersion using Laser Techniques’. In: Excitons, ed. by E.I. Rashba, M.D. Sturge (North Holland, Amsterdam 1982) p. 85

    Google Scholar 

  11. J. Toyozawa: Suppl. Prog. Theor. Phys. 12, 11 (1959)

    Article  Google Scholar 

  12. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann: Phys. Rev. B 56, 7554 (1997)

    Article  ADS  Google Scholar 

  13. F. Tassone, Y. Yamamoto: Phys. Rev. B 59, 10830 (1999)

    Article  ADS  Google Scholar 

  14. A.I. Tartakovskii, M. Emam-Ismail, R.M. Stevenson, M.S. Skolnick, V.N. Astratov, D.M. Whittaker, J.J. Baumberg, J.S. Roberts: Phys. Rev. B 62, R2283 (2000)

    Article  ADS  Google Scholar 

  15. M. Müller, J. Bleuse, R. André: Phys. Rev. B 62, 16886 (2000)

    Article  ADS  Google Scholar 

  16. This result was also confirmed in P. Senellart, J. Bloch, B. Sermage, J.Y. Marzin: Phys. Rev. B 62, R16263 (2000)

    Article  ADS  Google Scholar 

  17. P. Senellart, J. Bloch: Phys. Rev. Lett. 82, 1233 (1999)

    Article  ADS  Google Scholar 

  18. S. Pau, H. Cao, J. Jacobson, G. Björk, Y. Yamamoto: Phys. Rev. A 54, R1789 (1996) (retracted in H. Cao et al.: Phys. Rev. A 55, 4632 (1997))

    Article  ADS  Google Scholar 

  19. A. Imamoglu, R.J. Ram: Phys. Lett. A 214, 193 (1996)

    Article  ADS  Google Scholar 

  20. This process is described theoretically in C. Ciuti, P. Schwendimann, A. Quattropani: Phys. Rev. B 63, R041303 (2001) and in Ref. [21]

    Article  ADS  Google Scholar 

  21. D.M. Whittaker: Phys. Rev. B 63, 193305 (2001)

    Article  ADS  Google Scholar 

  22. Strong non-linear behavior of similar origin, for resonant excitation at an angle of 10°, is reported in Ref. [9]. R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, M. Begems: Phys. Rev. Lett. 85, 2793 (2000)

    Article  ADS  Google Scholar 

  23. In a very recent paper by J. Erland, V. Mizeikis, W. Langbein, J.R. Jensen, J.M. Hvam: Phys. Rev. Lett. 86, 5791 (2001) on very high quality samples with photon lifetimes of ≈10 ps, stimulation in ultrafast measurements was observed in the presence of the pump alone

    Article  ADS  Google Scholar 

  24. This density is similar to that originally obtained by R. Houdré, J.L. Gibernon, P. Pellandini, R.P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roy-croft, M. Begems: Phys. Rev. B 52, 7810 (1995) for the loss of strong coupling in microcavities

    Article  ADS  Google Scholar 

  25. Recent studies, R. Butté et al. (in preparation) show that lasing occurs in the weak coupling regime for negative detunings from –3 to 13 meV, with a steadily increasing threshold with increasing negative detuning

    Google Scholar 

  26. Le Si Dang, D. Heger, R. André, F. Boeuf, R. Romestain: Phys. Rev. Lett. 81, 3920 (1998)

    Article  ADS  Google Scholar 

  27. D.G. Lidzey, D.D.C. Bradley, T. Virgili, A. Armitage, M.S. Skolnick, S. Walker: Phys. Rev. Lett. 82, 3316 (1999)

    Article  ADS  Google Scholar 

  28. Recent corroboration of these results on II-VI microcavities has been obtained by J. Bloch, B. Sermage, L. Vina (private communications)

    Google Scholar 

  29. For a comprehensive review see S.A. Moskalenko, D.W. Snoke: Bose-Einstein Condensation of Excitons and Biexcitons (Cambridge University Press, Cambridge  2000) and also an earlier review by A. Mysyrowicz: ’Bose-Einstein Condensation of Excitonic Particles in Semiconductors’. In: Bose-Einstein Condensation, ed. by A. Griffin, D.W. Snoke, S. Stringari (Cambridge University Press, Cambridge 1995) p. 330

    Book  Google Scholar 

  30. L.V. Butov, A.L. Ivanov, A. Imamogm, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, A.C. Gossard: Phys. Rev. Lett. 86, 5608 (2001)

    Article  ADS  Google Scholar 

  31. D.W. Snoke, J.P. Wolfe, A. Mysyrowicz: Phys. Rev. Lett. 59, 827 (1987)

    Article  ADS  Google Scholar 

  32. D.W. Snoke, J.P. Wolfe, A. Mysyrowicz: Phys. Rev. B 41, 11171 (1990)

    Article  ADS  Google Scholar 

  33. D.W. Snoke, J.P. Wolfe: Phys. Rev. B 42, 7876 (1990)

    Article  ADS  Google Scholar 

  34. Evidence for Bose condensation of spin singlet paraexcitons was presented by J.L. Lin, J.P. Wolfe: Phys. Rev. B 71, 1223 (1993)

    Google Scholar 

  35. E. Fortin, S. Fafard, A. Mysyrowicz: Phys. Rev. Lett. 70, 3951 (1990)

    Article  ADS  Google Scholar 

  36. A. Mysyrowicz, E. Benson, E. Fortin: Phys. Rev. Lett. 77, 896 (1996)

    Article  ADS  Google Scholar 

  37. K.E. O’Hara, L.O. Suilleabhain, J.P. Wolfe: Phys. Rev. Lett. 60, 10565 (1999)

    Google Scholar 

  38. J.T. Warren, K.E. O’Hara, J.P. Wolfe: Phys. Rev. B 61, 8215 (2000)

    Article  ADS  Google Scholar 

  39. These conclusions have been rebutted in part in G.M. Kavoulakis, A. Mysyrowicz: Phys. Rev. B 61, 16619 (2000)

    Article  ADS  Google Scholar 

  40. S.G. Tikhodeev: Phys. Rev. Lett. 78, 3225 (1996)

    Article  ADS  Google Scholar 

  41. A. Mysyrowicz, E. Benson, E. Fortin: Phys. Rev. Lett. 78, 3226 (1997)

    Article  ADS  Google Scholar 

  42. L.L. Chase, N. Peyghambarian, G. Grinberg, A. Mysyrowicz: Phys. Rev. Lett. 42, 1231 (1979)

    Article  ADS  Google Scholar 

  43. N. Peyghambarian, L.L. Chase, A. Mysyrowicz: Phys. Rev. B 27, 2325 (1983)

    Article  ADS  Google Scholar 

  44. This contrasts with the experiments of Ref. [5] where the weak probe initiated the stimulated scattering of pump polaritons into the k =0 state. In the work of Refs. [42,43] the weak probe was scattered into the strong pump-created population

    Google Scholar 

  45. The pump-probe experiments of Ref. [43] were employed to distinguish the non-linear effects observed from competing explanations in terms of hyper Raman scattering results as described in e.g. J.B. Grun, B. Hönerlage, R. Levy: ‘Biexcitons in CuCl and Related Systems’. In: Excitons, ed. by E.I. Rashba, M.D. Sturge (North Holland, Amsterdam 1982) p. 459

    Google Scholar 

  46. see e.g. J.C. Hensel, T.G. Phillips and G.A. Thomas: Solid State Physics, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic Press, New York 1977), M. Voos, C. Benoit à la Guillaume: Optical Properties of Solids, New Developments, ed. by B.O. Seraphin (North Holland, Amsterdam 1976), Ya.E. Pokrov-skii: phys. stat. sol. (a) 11, 385 (1972)

    Google Scholar 

  47. Compared to much of the earlier discussion the fermionic high density phases exhibit broad luminescence lines as the electron and holes fill the band states in accordance with the Pauli exclusion principle.

    Google Scholar 

  48. see e.g. C. Kittel: Introduction to Solid State Physics (Wiley, New York 1996) p. 214

    Google Scholar 

  49. D. Bimberg, M.S. Skolnick, W.J. Choyke: Phys. Rev. Lett. 40, 56 (1978)

    Article  ADS  Google Scholar 

  50. M.S. Skolnick, D. Bimberg, W.J. Choyke: Solid State Commun. 28, 865 (1978)

    Article  ADS  Google Scholar 

  51. D. Bimberg, M.S. Skolnick, L.M. Sander: Phys. Rev. B 19, 2231 (1979)

    Article  ADS  Google Scholar 

  52. D. Bimberg, M.S. Skolnick, L.M. Sander: Solid State Commun. 27, 949 (1978)

    Article  ADS  Google Scholar 

  53. R.G. Humphreys, U. Rössler, M. Cardona: Phys. Rev. B 18, 5590 (1978)

    Article  ADS  Google Scholar 

  54. J. Leotin, R. Barbaste, S. Askenazy, M.S. Skolnick, R.A. Stradling, J. Tuchend-ler: Solid State Commun. 15, 693 (1974)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skolnick, M.S., Tartakovskii, A.I., Butté, R., Stevenson, R.M., Baumberg, J.J., Whittaker, D.M. (2002). High Occupancy Effects and Condensation Phenomena in Semiconductor Microcavities and Bulk Semiconductors. In: Grundmann, M. (eds) Nano-Optoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56149-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56149-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62807-8

  • Online ISBN: 978-3-642-56149-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics