Skip to main content

Molecular Dynamics in Confining Space

  • Chapter
Broadband Dielectric Spectroscopy

Abstract

The molecular and collective dynamics in confining space is determined by the counter balance between surface- and confinement effects [1]. The former results from interactions of a host system with guest molecules which take place at the interface between both, the latter originates from the inherent length scale on which the underlying molecular fluctuations take place. Surface effects cause a decrease while confinement effects are characterised by an increase of the molecular dynamics with decreasing spatial dimensions of the confining space (Fig.6.1). Hence in glass-forming systems [2–7]for the calorimetric glass transition temperature an increase resp. a decrease is observed. It is evident that this counterbalance must depend sensitively on the type of confined molecules (glass-forming liquids, polymers, liquid crystals), on the properties of the (inner) surfaces (wetting, non-wetting) and on the architecture of the molecules with respect to the walls (grafted, layered or amorphous systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kremer F, Huwe A, Arndt M, Behrens P, Schwieger W (1999) J Phys Cond Matter 11:A175

    Article  CAS  Google Scholar 

  2. Adam G, Gibbs JH (1965) J Chem Phys 43:139

    Article  CAS  Google Scholar 

  3. Donth E (1981) Glasübergang. Akademie, Berlin

    Google Scholar 

  4. Donth E (1992) Relaxation and thermodynamics in polymers, glass transition. Akademie Verlag, Berlin

    Google Scholar 

  5. Fischer EW, Donth E, Steffen W (1992) Phys Rev Lett 68:2344

    Article  CAS  Google Scholar 

  6. Fischer EW (1993) Physica A 201:183

    Article  CAS  Google Scholar 

  7. Sappelt D, Jäckle J (1993) J Phys A 26:7325

    Article  CAS  Google Scholar 

  8. Huwe A, Kremer F, Behrens P, Schwieger W (1999) Phys Rev Lett 82:2338

    Article  CAS  Google Scholar 

  9. Gorbatschow W, Arndt M, Stannarius R, Kremer F (1996) Europhys Lett 35:719

    Article  CAS  Google Scholar 

  10. Arndt M, Stannarius R, Gorbatschow W, Kremer F (1996) Phys Rev E 54:5377

    Article  CAS  Google Scholar 

  11. a Stannarius R, Kremer F, Arndt M (1995) Phys Rev Lett 75:4698; b Arndt M, Stannarius R, Groothues H, Hempel E, Kremer F (1997) Phys Rev Lett 79:2077

    Google Scholar 

  12. Barut G, Pissis P, Pelster R, Nimtz G (1998) Phys Rev Lett 80:3543

    Article  CAS  Google Scholar 

  13. Pissis P, Kyritsis A, Daoukaki D, Barut G, Pelster R, Nimtz G (1998) J Phys Cond Matter 10:6205

    Article  CAS  Google Scholar 

  14. Daoukaki D, Barut G, Pelster R, Nimtz G, Kyritsis A, Pissis P (1998) Phys Rev B 58:5336

    Article  CAS  Google Scholar 

  15. Pissis P, Kyritsis A, Barut G, Pelster R, Nimtz G (1998) J Non-Cryst Solids 235/237:444

    Article  Google Scholar 

  16. Wendt H, Richert R (1999) J Phys Cond Matter 11:A199

    Article  CAS  Google Scholar 

  17. Schönhals A, Stauga R (1998) J Non-Cryst Solids 235–237:450

    Article  Google Scholar 

  18. Schönhals A, Stauga R (1998) J Chem Phys 108:5130

    Article  Google Scholar 

  19. Rittig F, Huwe A, Fleischer G, Kärger J, Kremer F (1999) Phys Chem Chem Phys 1:519

    Article  CAS  Google Scholar 

  20. Liu G, Li Y, Jonas J (1991) J Chem Phys 95:6892

    Article  CAS  Google Scholar 

  21. Zhang J, Liu G, Jonas J (1992) J Chem Phys 96:3478

    Article  CAS  Google Scholar 

  22. Streck C, Mel’nichenko YB, Richert R (1996) Phys Rev B 53:5341

    Article  CAS  Google Scholar 

  23. Schüller J, Mel’nichenko YB, Richert R, Fischer EW (1994) Phys Rev Lett 73:2224

    Article  Google Scholar 

  24. Meier WM, Olson DH, Baerlocher C (1996) Atlas of zeolite structure types. Elsevier, Amsterdam

    Google Scholar 

  25. Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New York

    Google Scholar 

  26. Bibby M, Dale MP (1985) Nature 317:157

    Article  CAS  Google Scholar 

  27. Braunbarth CM, Behrens P, Felsche J, van de Goor G (1997) Solid State Ionics 101/103: 1273

    Article  Google Scholar 

  28. Newsam JM, Treacy MMJ, Koetsier WT, de Gruyter CB (1988) Proc R Soc (London) 420:375

    Article  CAS  Google Scholar 

  29. Havriliak S, Negami S (1966) J Polym Sci C 14:99

    Article  Google Scholar 

  30. Havriliak S, Negami S (1967) Polymer 8:161

    Article  CAS  Google Scholar 

  31. Schäfer H, Sternin E, Stannarius R, Arndt M, Kremer F (1996) Phys Rev Lett 76:2177

    Article  Google Scholar 

  32. Vogel H (1921) Phys Zeit 22:645

    CAS  Google Scholar 

  33. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  34. Tammann G, Hesse G (1926) Anorg Allgem Chem 156:245

    Article  Google Scholar 

  35. Jordan BP, Sheppard RJ, Szwarnowski S (1978) J Phys D 11:695

    Article  CAS  Google Scholar 

  36. Mayo SL, Olafson BD, Goddard WA III (1990) J Phys Chem 94:8897

    Article  CAS  Google Scholar 

  37. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10,024

    Google Scholar 

  38. Burchart E (1992) Thesis, Technische Universiteit Delft

    Google Scholar 

  39. Cusack NE (1987) The physics of structurally disordered matter. Adam Hilger, Bristol

    Google Scholar 

  40. van Beek LKH (1967) In: Birks JB (ed) Progress in dielectrics. Heywood, London, vol 7, p 69

    Google Scholar 

  41. Maxwell JC (1892) Electricity and magnetism. Clarendon, Oxford 1:452

    Google Scholar 

  42. Sillars RW (1937) J Inst Elect Engrs 80:378

    Google Scholar 

  43. Hanai T (1968) Electrical properties of emulsions. In: Sherman P (ed) Emulsion science. Academic Press, New York, pp 353–478

    Google Scholar 

  44. Kamiyoshi K (1950) Sci Rep Res Inst Tohoku Univ 26:318

    Google Scholar 

  45. Pelster R (1999) Phys Rev B 59:9214

    Article  CAS  Google Scholar 

  46. Yan X, Streck C, Richert R (1997) In: Drake JM, Klafter J, Kopelman R (eds) Dynamics in small confining systems III. Materials Research Society, Pittsburgh, Pennsylvania 464:33

    Google Scholar 

  47. Schönhals A, Kremer F, Hofmann A, Fischer EW, Schlosser E (1993) Phys Rev Lett 70:3459

    Article  Google Scholar 

  48. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Bech JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  49. Beck JS, Vartuli JC, Roth WJ, Leonovicz ME, Kresge CT, Schitt KD, Chu CTW, Olson DH, Shappard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114: 10,834

    Google Scholar 

  50. Casalini R, Fioretto D, Livi A, Lucchesi M, Rolla PA (1997) Phys Rev B 56:3016

    Article  CAS  Google Scholar 

  51. Schönhals A, Goering H, Schick C (2002) J Non-Cryst Solids (in press)

    Google Scholar 

  52. Petychakis L, Floudas G, Fleischer G (1997) Europhys Lett 40:685

    Article  CAS  Google Scholar 

  53. Stockmayer WH (1967) Pure Appl Chem 15:539; Stockmayer WH, Burke JJ (1969) Macromolecules 2:647

    Article  Google Scholar 

  54. Adachi K, Kotaka T (1993) Prog Polym Sci 18:585

    Article  CAS  Google Scholar 

  55. a Appel M, Fleischer G, Kärger J, Chang I, Fujara F, Schönhals A (1997) Colloid Polym Sci. 275:187; Fleischer G, Appel M (1995) Macromolecules 28:7281; b Schönhals A, Goering H, Schick C (2002) In preparation

    Article  Google Scholar 

  56. Crawford GP, Zumer S (1996) Liquid crystals in complex geometries. Taylor and Francis, London Bristol

    Google Scholar 

  57. Rozanski SA, Stannarius R, Groothues H, Kremer F (1996) Liq Cryst 20:59

    Article  Google Scholar 

  58. a Sinha GP, Aliev FM (1998) Phys Rev E 58:2001; b Aliev I, Sinha GP (2001) Mol Cryst Liq Cryst 364:435

    Article  CAS  Google Scholar 

  59. Różański SA, Kremer F, Groothues H, Stannarius R (1997) Mol Cryst Liq Cryst 303:319

    Article  Google Scholar 

  60. Goleme A, Zumer S, Allender DW, Doane JW (1988) Phys Rev Lett 61:1937

    Article  Google Scholar 

  61. Cramer C, Cramer T, Kremer F, Stannarius R (1997) J Chem Phys 106:3730

    Article  CAS  Google Scholar 

  62. Cramer C, Cramer T, Arndt M, Kremer F, Naji L, Stannarius R (1997) Mol Cryst Liq Cryst 303:209

    Article  CAS  Google Scholar 

  63. a Frunza S, Frunza L, Schönhals A, Zubova H-L, Kosslick H, Carius HE, Fricke R (1999) Chem Phys Lett 307:167; b Frunza S, Frunza L, Schönhals A (2000) J Phys IV 10:115

    Article  CAS  Google Scholar 

  64. Won APY, Kim SB, Goldburg WI, Chan WHM (1993) Phys Rev Lett 70:954

    Article  Google Scholar 

  65. Tschierske S, Yaroshchuk OV, Kresse H (1995) Cryst Res Technol 30:571

    Article  CAS  Google Scholar 

  66. Buka A, de Jeu WH (1982) J Physique 43:361

    Article  CAS  Google Scholar 

  67. Różański SA, Stannarius R, Kremer F (1999) Z Phys Chem 211:147

    Article  Google Scholar 

  68. Różański SA, Stannarius R, Kremer F (2001) IEEE Trans Dielectr Electr Insul 8:488

    Article  Google Scholar 

  69. Różański SA, Stannarius R, Kremer F (2001) Liq Cryst 28:1071

    Article  Google Scholar 

  70. Różański SA, Stannarius R, Kremer F (2001) XIV Conference on Liquid Crystals, 3–7 September 2001, Zakopane, Poland, Abstract p A28

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kremer, F., Huwe, A., Schönhals, A., Różański, S.A. (2003). Molecular Dynamics in Confining Space. In: Kremer, F., Schönhals, A. (eds) Broadband Dielectric Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56120-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56120-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62809-2

  • Online ISBN: 978-3-642-56120-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics