Adaptive Meshfree Method of Backward Characteristics for Nonlinear Transport Equations

  • Jörn Behrens
  • Armin Iske
  • Martin Käser
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 26)

Abstract

In previous work, a new adaptive meshfree advection scheme for numerically solving linear transport equations has been proposed. The scheme, being a combination of an adaptive semi-Lagrangian method and local radial basis function interpolation, is essentially a method of backward characteristics. The adaptivity of the meshfree advection scheme relies on customized rules for the refinement and coarsening of scattered nodes. In this paper, the method is extended to nonlinear transport equations. To this end, in order to be able to model shock propagation, an artificial viscosity term is added to the scheme. Moreover, the local interpolation method and the node adaption rules are modified accordingly. The good performance of the resulting method is finally shown in the numerical examples by using two specific nonlinear model problems: Burgers equation and the Buckley-Leverett equation, the latter describing a two-phase fluid flow in a porous medium.

Keywords

Petroleum Hydrocarbon Advection Lution Sonar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behrens J. (1996) An adaptive semi-Lagrangian advection scheme and its parallelization. Mon. Wea. Rev. 124, 2386–2395.CrossRefGoogle Scholar
  2. 2.
    Behrens J. (1998) Atmospheric and ocean modeling with an adaptive finite element solver for the shallow-water equations. Applied Numerical Mathematics 26, 217–226.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Behrens J., and A. Iske (2001) Grid-free adaptive semi-Lagrangian advection using radial basis functions. To appear in Computers and Mathematics with Applications.Google Scholar
  4. 4.
    Behrens J., A. Iske, and St. Pöhn (2001) Effective node adaption for grid-free semi-Lagrangian advection. Discrete Modelling and Discrete Algorithms in Continuum Mechanics,  Th. Sonar and I. Thomas (eds.), Logos Verlag, Berlin, 110–119.Google Scholar
  5. 5.
    Buckley, J. M., and M. C. Leverett (1942) Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116.Google Scholar
  6. 6.
    Burgers, J. M. (1940) Application of a model system to illustrate some points of the statistical theory of free turbulence. Proc. Acad. Sci. Amsterdam 43, 2–12.MathSciNetGoogle Scholar
  7. 7.
    Courant, R., E. Isaacson, and M. Rees (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Appl. Math. 5, 243–255.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Duchon, J. (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive Theory of Functions of Several Variables, W. Schempp and K. Zeller (eds.), Springer, Berlin, 85–100.CrossRefGoogle Scholar
  9. 9.
    Durran, D. R. (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York.Google Scholar
  10. 10.
    Falcone, M., and R. Ferretti (1998) Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35:3, 909–940.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fürst, J., and Th. Sonar (2001) On meshless collocation approximations of conservation laws: positive schemes and dissipation models. ZAMM 81, 403–415.MATHCrossRefGoogle Scholar
  12. 12.
    Gustafsson, B., H.-O. Kreiss, and J. Oliger (1995) Time Dependent Problems and Difference Methods, John Wiley and Sons, New York.MATHGoogle Scholar
  13. 13.
    Gutzmer, T., and A. Iske (1997) Detection of discontinuities in scattered data approximation. Numerical Algorithms 16:2, 155–170.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Iske, A. (2001) Scattered data modelling using radial basis functions. Principles of Multiresolution in Geometric Modelling, M.S. Floater, A. Iske, and E. Quak (eds.), Summer School Lecture Notes, Munich University of Technology, 271–301.Google Scholar
  15. 15.
    Preparata, F. P., and M. I. Shamos (1985) Computational Geometry, Springer, New York.CrossRefGoogle Scholar
  16. 16.
    Robert, A. (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmosphere-Ocean, 19, 35–46.CrossRefGoogle Scholar
  17. 17.
    Welge, H. J. (1952) A simplified method for computing oil recovery by gas or water drive. Trans. AIME 195, 97–108.Google Scholar
  18. 18.
    Wu, Z., and R. Schaback (1993) Local error estimates for radial basis function interpolation of scattered data. IMA J. of Numerical Analysis 13, 13–27.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jörn Behrens
    • 1
  • Armin Iske
    • 1
  • Martin Käser
    • 1
  1. 1.Technische Universität MünchenMünchenGermany

Personalised recommendations