Skip to main content

Spectral Properties and UV-Attenuation in Arctic Marine Waters

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 153))

Abstract

The Arctic can be delimited by the Arctic Circle at 66 ° 32 ‘N, which is the southern boundary of the midnight sun. For many purposes, however, it will be more meaningful to base the limits of the Arctic on climate, vegetation, or seawater characteristics (Murray 1998). In this chapter, we have chosen to define Arctic marine waters as the sea within the region delineated by the Arctic Monitoring and Assessment Programme (AMAP). The boundaries of this region are a compromise between major oceanographic features, permafrost limits, vegetation boundaries, and political boundaries (Murray 1998). The Arctic marine waters will then include the Pacific Ocean north of the Aleutian Islands, Hudson Bay, and parts of the North Atlantic Ocean including the Labrador Sea, South-Icelandic waters and the Faroe Islands. The boundary follows the Norwegian coast northward from 62°N (Fig2.1). Within this area all solar elevations will be less than 60 °.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aas E (1969) On submarine irradiance measurements. Rep Dept Phys Oceanogr Univ Copenhagen 6

    Google Scholar 

  • Aas E (1971) The natural history of the Hardangerfjord. 9. Irradiance in Hardangerfjorden 1967. Sarsia 46:59–78

    Google Scholar 

  • Aas E (1976) The vertical attenuation coefficient of submarine irradiance. Rep Dept Geophys Univ Oslo 19

    Google Scholar 

  • Aas E (1980) Relations between total quanta, blue irradiance, and Secchi disc observations in the Norwegian and Barents Seas. In: Studies in Physical Oceanography. Papers dedicated to Professor Nils G. Jerlov in commemoration of his seventieth birthday. Rep Dept Phys Oceanogr Univ Copenhagen 42, pp 11–27

    Google Scholar 

  • Aas E, Berge G (1976) Irradiance observations in the Norwegian and Barents Seas. Rep Dept Geophys Univ Oslo 23

    Google Scholar 

  • Aas E, Bogen J (1988) Colors of glacier water. Water Resour Res 24:561–565

    Article  Google Scholar 

  • Aas E, Hojerslev NK (1999) Analysis of underwater radiance observations: Apparent optical properties and analytic functions describing the angular radiance distribu-tion. J Geophys Res 104:8015–8024

    Article  Google Scholar 

  • Aas E, Hokedal J (1996a) Properties of marine optical components in the ultraviolet part of the spectrum. Rep Dept Geophys Univ Oslo 99

    Google Scholar 

  • Aas E, Hokedal J (1996b) Penetration of ultraviolet B, blue and quanta irradiance into Svalbard waters. Polar Res 15:127–138

    Article  Google Scholar 

  • Aas E, Hokedal J (1999) Reflection of spectral sky irradiance on the surface of the sea and related properties. Remote Sensing Environ 70:181–190

    Article  Google Scholar 

  • Alekseev VV, Lisitsyna KN (1978) Run-off of suspended sediment. In: Korzun VI (ed) World water balance and water resources of the earth. UNESCO, Paris, pp 525–532

    Google Scholar 

  • Andersen OGN (1989) Primary production, chlorophyll, light and nutrients beneath the arctic sea ice. In: Herman Y (ed) The Arctic Seas. Van Nostrand Reinhold, New York, pp 147–191

    Chapter  Google Scholar 

  • Austin RW (1974) Remote sensing of spectral radiance from below the ocean surface. In: Jerlov NG, Steemann Nielsen E (eds) Optical aspects of oceanography. Academic Press, London, pp 317–344

    Google Scholar 

  • Austin RW, Petzold TJ (1984) Spectral dependence of the diffuse attenuation coefficient of light in ocean water. Ocean Optics VII Proc SPIE - Int Soc Opt Eng 489:168–178

    Article  Google Scholar 

  • Austin RW, Petzold TJ (1990) Spectral dependence of the diffuse attenuation coefficient of light in ocean waters: a re-examination using new data. Ocean Optics X Proc SPIE - Int Soc Opt Eng 1302:79–93

    Article  Google Scholar 

  • Baker KS, Smith RC (1990) Irradiance transmittance through the air-water interface. Ocean Optics X Proc SPIE - Int Soc Opt Eng 1302:556–565

    Article  Google Scholar 

  • Bischof K, Hanelt D, Tug H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bogen J (1991) Erosion and sediment transport in Svalbard. In: Gjessing Y, Hagen JO, Hassel KA, Sand K, Wold B (eds) Arctic hydrology. Present and future tasks. Norw Nation Com Hydrol Oslo Rep 23, pp 147–158

    Google Scholar 

  • Boivin LP, Kartha VB, Stevens WH (1986) Determination of the attenuation coefficients of visible and ultraviolet radiation in heavy water. Appl Opt 25:877–882

    Article  PubMed  CAS  Google Scholar 

  • Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea(yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53

    Article  CAS  Google Scholar 

  • Bruns E (1958) Ozeanologie, vol I. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Buiteveld H, Hakvoort JHM, Donze M (1994) The optical properties of pure water. Ocean Optics XII Proc SPIE - Int Soc Opt Eng 2258:174–183

    Article  CAS  Google Scholar 

  • Calkins J, Thórdardóttir T (1982) Penetration of solar UV-B into waters off Iceland. In: Calkins J (ed) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York, pp 309–319

    Google Scholar 

  • Carmack EC (1990) Large-scale physical oceanography of polar oceans. In: Smith WO Jr (ed) Polar oceanography, part A. Physical science. Academic Press, San Diego, pp 171–222

    Google Scholar 

  • Dallokken R, Sandvik R, Sakshaug E (1994) Variations in bio-optical properties in the Greenland/Iceland/Norwegian seas. In: Jaffe JS (ed) Ocean Optics XII Proc SPIE Int Opt Soc Opt Eng 2258:266–276

    Chapter  Google Scholar 

  • Dallokken R, Sandvik R, Sakshaug E (1995) Seasonal variations in the Greenland Sea: effect of phytoplankton light absorptions. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier, Amsterdam, pp 33–43

    Google Scholar 

  • Eisma D, Kalf J (1978) Suspended matter between Norway and Shetland and in the Sognefjord. Interne Versl Nederl Inst Onderz Zee Texel 13

    Google Scholar 

  • Endresen 0 (1995) Observations of spectral irradiance, quantum irradiance and Secchi disk depth during KAREX-95. Norw Polar Inst Int Rep, Tromso

    Google Scholar 

  • Evenset A, Dahle S, Loring D, Skei J, Sorensen K, Cochrane S, Carrol J, Forsberg CF, Fredriksen K-R (1999) KAREX 94: an environmental survey of the Kara Sea and the estuaries of Ob and Yenisey. Akvaplan-niva Tromso Rep APN 414.96.1006

    Google Scholar 

  • Gerland S, Winther J-G, Orbaek JB, Ivanov BV (1999) Physical properties, spectral reflectance and thickness development of first year fast ice in Kongsfjorden, Svalbard. Polar Res 18:275–282

    Article  Google Scholar 

  • Gershun A (1939) The light field. J Math Phys 18:51–151

    Google Scholar 

  • Gilbert GD, Buntzen RR (1986) In-situ measurements of the optical properties of arctic sea ice. Ocean Optics VIII Proc SPIE — Int Soc Opt Eng 637:252–263

    Article  CAS  Google Scholar 

  • Gordeev VV, Martin JM, Sidorov IS, Sidorova MV (1996) A reassessment of the Eurasian river input of water, sediment, major elements and nutrients to the Arctic Ocean. Am J Sci 296:664–691

    Article  CAS  Google Scholar 

  • Gordon HR, Brown OB, Jacobs MM (1975) Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Appl Opt 14:417–427

    Article  PubMed  CAS  Google Scholar 

  • Gregor DJ, Loeng H, Barrie L (eds) (1998) The influence of physical and chemical processes on contaminant transport into and within the Arctic. In: AMAP assessment report: arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, pp 25–116

    Google Scholar 

  • Grenfell TC, Perovich DK (1981) Radiation absorption coefficients of polycrystalline ice from 400–1400 nm. J Geophys Res 86:7447–7450

    Article  Google Scholar 

  • Hanelt D, Tug H, Bischof K, Gross C, Lippert H, Sawall T, Karsten U, Wiencke C (2001) Light regime in an Arctic fjord: a study related to atmospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    Article  CAS  Google Scholar 

  • Hood DW, Reeburgh WS (1974) Chemistry of the Bering Sea: an overview. In: Hood DW, Kelley EJ (eds) Oceanography of the Bering Sea with emphasis on renewable resources. Inst Mar Sci Univ Alaska Fairbanks, pp 191–204

    Google Scholar 

  • Hojerslev NK (1978) Solar middle ultraviolet (UV-B) measurement in coastal waters rich in yellow substance. Limnol Oceanogr 23:1076–1079

    Article  Google Scholar 

  • Hojerslev NK (1982) Yellow substance in the sea. In: Calkins J (ed) The role of solarultraviolet radiation in marine ecosystems. Plenum Press, New York, pp 263–281

    Google Scholar 

  • Hojerslev NK (1985) Bio-optical measurements in the Southwest Florida Shelf ecosystem. J Cons Int Explor Mer 42:65–82

    Google Scholar 

  • Hojerslev NK (1986) Optical properties of sea water. In: Sundermann J (ed) LandoltBörnstein numerical data and functional relationships in science and technology, new series, vol 3a. Springer, Berlin Heidelberg New York, pp 383–462

    Google Scholar 

  • Hojerslev NK (1989) Shelf optics. In: Science Applications International Corporation (SAIC) (ed) Gulf of Mexico. Physical Oceanography Program, vol II. Final report: year 5. MMS US Dept Interior Min Manage Sery Gulf of Mexico OCS Reg OCS Study MMS 89–0068, pp 290–326

    Google Scholar 

  • Hojerslev NK, Aas E (1991) A relationship for the penetration of ultraviolet B radiation into the Norwegian Sea. J Geophys Res 96:17003–17005

    Article  Google Scholar 

  • Hojerslev NK, Aas E (1999) Spectral light absorption by Gelbstoff in coastal waters displaying highly different concentrations. Conf Pap, vol 3. Ocean Optics XIV Hojerslev NK,Aas E (2001) Spectral light absorption by yellow substance in the Kattegat-Skagerrak area. Oceanologia 43(1):39–60

    Google Scholar 

  • Hojerslev NK, Lundgren B (1977) Inherent and apparent optical properties of Icelandic waters “Bjarni Smmundsson Overflow 73”. Rep Dept Phys Oceanogr Univ Copenhagen 33

    Google Scholar 

  • Hokedal J (1995) Observations of Secchi disk depth, spectral irradiance and quantum irradiance during KAREX-94. Norw Polar Inst Int Rep

    Google Scholar 

  • Hokedal J (1999) Upward light in Oslofjorden and its dependence on solar elevation, suspended particles, and Gelbstoff. Dr Thesis Fac Math Nat Sciences Univ Oslo, ISBN 1501–2210 23

    Google Scholar 

  • Hokedal J, Aas E (1994) Calibration of two single-channel instruments for UV-B and blue irradiance. Rep Dept Geophys Univ Oslo 88

    Google Scholar 

  • Hokedal J, Aas E (1998) Observations of spectral sky radiance and solar irradiance. Rep Dept Geophys Univ Oslo 103 Spectral Properties and UV-Attenuation in Arctic Marine Waters

    Google Scholar 

  • Ivanov VV (1991) Studies of the arctic water resources: state-of-the-art and future plans. In: Gjessing Y, Hagen JO, Hassel KA, Sand K, Wold B (eds) Arctic hydrology. Present and future tasks. Norw Nation Corn Hydrol Oslo Rep 23, pp 63–74

    Google Scholar 

  • Ivanov VV, Strokina LA (1978) Fresh-water balance of the ocean. In: Korzun VI (ed) World water balance and water resources of the earth. UNESCO, Paris, pp 578–581

    Google Scholar 

  • Jerlov NG (1951) Optical studies of ocean water. Rep Swedish Deep-Sea Exped 3

    Google Scholar 

  • Jerlov NG (1974) A simple method for measuring quanta irradiance in the ocean. Rep Dept Phys Oceanogr Univ Copenhagen 24

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  • Kopelevich OV, FilippovYV (1994) Comparison between different spectral models of the diffuse attenuation and absorption coefficients of sea water. Ocean Optics XII Proc SPIE — Int Soc Opt Eng 2258:210–221

    Article  Google Scholar 

  • Kowalczuk P (1999) Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J Geophys Res 104:30047–30058

    Article  Google Scholar 

  • Kowalczuk P, Kaczmarek S (1996) Analysis of temporal and spatial variability of `yellow substance’ absorption in the southern Baltic. Oceanologia 38:3–32

    Google Scholar 

  • Maykut GA, Grenfell TC (1975) The spectral distribution of light beneath first-year sea ice in the Arctic Ocean. Limnol Oceanogr 20:554–563

    Article  Google Scholar 

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J Geophys Res 93:10749–10768

    Article  Google Scholar 

  • Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722

    Article  Google Scholar 

  • Murray JL (ed) (1998) Physical/geographical characteristics of the Arctic. In: AMAP assessment report: arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, pp 9–24

    Google Scholar 

  • Nyquist G (1979) Investigation of some properties of seawater with special reference to ligning sulfonates and humic substances. PhD Thesis, Dept Anal Mar Chem, Univ Gothenburg

    Google Scholar 

  • Opsahl S, Benner R, Amon RMW (1999) Major flux of terrigenous dissolved organic matter through the Arctic Ocean. Limnol Oceanogr 44:2017–2023

    Article  CAS  Google Scholar 

  • Perovich DK (1998) The optical properties of sea ice. In: Leppäranta M (ed) Physics of ice-covered seas. Helsinki Univ Press, Helsinki, pp 195–230

    Google Scholar 

  • Perovich DK, Govoni JW (1991) Absorption coefficients of ice from 250 to 400 nm. Geophys Res Lett 18:1233–1235

    Article  Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723

    Article  PubMed  CAS  Google Scholar 

  • Roesler CS, Iturriaga R (1994) Absorption properties of marine derived material in arctic sea ice. Ocean Optics XII Proc SPIE — Int Soc Opt Eng 2258:933–943

    Article  Google Scholar 

  • Shibata K, Benson AA, Calvin M (1954) The absorption spectra of suspensions of living micro-organisms. Biochim Biophys Acta 15:461–470

    Article  PubMed  CAS  Google Scholar 

  • Smith RC (1973) Optical properties of the arctic upper water. Arctic 26:303–313

    Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20:177–184

    Article  PubMed  CAS  Google Scholar 

  • Sogandares FM, Fry ES (1997) Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl Opt 36:8699–8709

    Article  PubMed  CAS  Google Scholar 

  • Stambler N, Lovengreen C, Tilzer MM (1997) The underwater light field in the Bellingshausen and Amundsen Seas (Antarctica). Hydrobiology 344:41–56

    Article  CAS  Google Scholar 

  • Trodahl HJ, Buckley RG (1990) Enhanced ultraviolet transmission of antarctic sea ice during the Austral spring. Geophys Res Lett 17:2177–2179

    Article  Google Scholar 

  • Vincent WF, Laurion I, Pienitz R (1998) Arctic and Antarctic lakes as optical indicators of global change. Ann Glaciol 27:691–696

    CAS  Google Scholar 

  • Vodacek A, Blough NV, DeGrandpre MD, Peltzer ET, Nelson RK (1997) Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation. Limnol Oceanogr 42:674–686

    Article  CAS  Google Scholar 

  • Wheeler PA, Watkins JM, Hansing RL (1997) Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon. Deep-Sea Res II 44:1571–1592

    Google Scholar 

  • Williams PJ le B (1975) Biological and chemical aspects of dissolved organic material in sea water. In: Riley JP, Skirrow G (eds) Chemical oceanography, vol 2, 2nd edn. Academic Press, London, pp 301–363

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aas, E., Høkedal, J., Højerslev, N.K., Sandvik, R., Sakshaug, E. (2002). Spectral Properties and UV-Attenuation in Arctic Marine Waters. In: Hessen, D.O. (eds) UV Radiation and Arctic Ecosystems. Ecological Studies, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56075-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56075-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62655-5

  • Online ISBN: 978-3-642-56075-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics