UV Radiation Effects on Phytoplankton Primary Production: A Comparison Between Arctic and Antarctic Marine Ecosystems

  • E. W. Helbling
  • V. E. Villafañe
Part of the Ecological Studies book series (ECOLSTUD, volume 153)


Polar oceans are major water bodies that sustain a considerable portion of the world’s primary production (Smith 1991; Longhurst et al. 1995). Phytoplankton net primary production is calculated to be about 1 to 9 GT C/year in the Arctic and Southern Oceans, respectively, which corresponds roughly to 20% of the world’s aquatic production (Longhurst et al. 1995; Behrenfeld and Falkowski 1997). Throughout this chapter, we will refer indistinctly to Southern Ocean or Antarctic waters to indicate waters south of the Antarctic Convergence (polar front). Solar radiation and water temperature are two of the most important abiotic factors known to affect phytoplankton primary productivity in polar waters (Sakshaug and Holm-Hansen 1984). It is expected that any stress factor that affects these autotrophic organisms will cause a significant impact in higher trophic levels of the aquatic food web (Häder et al. 1995).


Ozone Depletion Solar Ultraviolet Radiation Phytoplankton Primary Production Ozone Depletion Event Antarctic Phytoplankton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackley SF, Buck KR, Taguchi S (1979) Standing crop of algae in the sea ice of the Weddell Sea region. Deep-Sea Res 26A:269–281CrossRefGoogle Scholar
  2. Adams NL, Shick JM (1996) Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchinStronglyocentrotus droebachiensis.Photochem Photobiol 64:149–158CrossRefGoogle Scholar
  3. Alexander V, Chapman T (1981) The role of epontic algal communities in Bering Sea ice. In: Hood DW, Calder JA (eds) The Eastern Bering Sea Shelf: oceanography and resources II. University of Washington Press, Washington, DC, pp 773–780Google Scholar
  4. Atkinson RJ, Matthews WA, Newman PA, Plumb RA (1989) Evidence of the mid-latitude impact of Antarctic ozone depletion. Nature 340:290–294CrossRefGoogle Scholar
  5. Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20CrossRefGoogle Scholar
  6. Behrenfeld M, Hardy J, Gucinski H, Hanneman A, Lee H II, Wones A (1993) Effects of ultraviolet-B radiation on primary production along latitudinal transects in the South Pacific Ocean. Mar Environ Res 35:349–363CrossRefGoogle Scholar
  7. Behrenfeld MJ, Lean DRS, Lee H (1995) Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J Phycol 31:25–36CrossRefGoogle Scholar
  8. Bidigare RR, Iriarte JL, Kang SH, Karentz D, Ondrusek ME, Fryxell GA (1996) Phytoplankton: quantitative and qualitative assessments. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research West of the Antarctic Peninsula. American Geophysical Union, Washington, DC, pp 173–198CrossRefGoogle Scholar
  9. Bischof K, Hanelt D, Tug H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395CrossRefGoogle Scholar
  10. Boelen P, Veldhuis MJW, Buma AGJ (2001) Accumulation and repair of UVBR mediated DNA damage in marine tropical picoplankton subjected to mixed and simulated non-mixed conditions. Aquat Microb Ecol 24:265–274CrossRefGoogle Scholar
  11. Booth CR, Lucas TB, Morrow JH, Weiler CS, Penhale PA (1994) The United States National Science Foundation’s Polar Network for monitoring ultraviolet radiation. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 17–37CrossRefGoogle Scholar
  12. Bothwell ML, Sherbot DMJ, Pollock CM (1994) Ecosystem response to solar ultraviolet-B radiation: influence of trophic level interactions. Science 265:97–100PubMedCrossRefGoogle Scholar
  13. Boucher NP, Prézelin PP (1996) An in situ biological weighting function for UV inhibition of phytoplankton carbon fixation in the Southern Ocean. Mar Ecol Prog Ser 144:223–236CrossRefGoogle Scholar
  14. Buma AGJ, Noordeloos AAM, Larsen J (1993) Strategies and kinetics of photoacclimation in three Antarctic nanophytoflagellates. J Phycol 29: 407–417CrossRefGoogle Scholar
  15. Buma AGJ, Zemmelink HJ, Sjollema K, Gieskes WWC (1996) UVB radiation modifies protein and photosynthetic pigment content, volume and ultrastructure of marine diatoms. Mar Ecol Prog Ser 142:47–54CrossRefGoogle Scholar
  16. Buma AGJ, Engelen AH, Gieskes WWC (1997) Wavelength-dependent induction of thymine dimers and growth rate reduction in the marine diatomCyclotellasp. exposed to ultraviolet radiation. Mar Ecol Prog Ser 153:91–97CrossRefGoogle Scholar
  17. Buma AGJ, Boer MK, Boelen P (2001) Depth distributions of DNA damage in Antarctic marine phyto-and bacterioplankton exposed to Summertime ultraviolet radiation. J Phycol 37:200–208CrossRefGoogle Scholar
  18. Bursa AS (1961) The annual oceanographic cycle at Igloolik in the Canadian Arctic. II. The phytoplankton. J Fish Res Board Can 18:563–615CrossRefGoogle Scholar
  19. Caldwell MM, Teramura AH, Tevini T (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol 4:363–367PubMedCrossRefGoogle Scholar
  20. Carmack EC, Swift JH (1990) Some aspects of the large-scale physical oceanography of the Arctic Ocean influencing biological distributions. In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, UK, pp 35–46Google Scholar
  21. Carreto JI, Carigman MO, Daleo G, De Marco SG (1990) Occurrence of mycosporine-like amino acids in the red-tide dinoflagellateAlexandrium excavatum:UV-photoprotective compounds? J Plankton Res 112:909–921CrossRefGoogle Scholar
  22. Chipperfield MP, Jones RL (1999) Relative influences of atmospheric chemistry and transport on Arctic ozone trends. Nature 400:551–554CrossRefGoogle Scholar
  23. Cullen JJ, Neale PJ (1994) Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth Res 39:303–320CrossRefGoogle Scholar
  24. Cullen JJ, Neale PJ (1997a) Effect of UV on short-term photosynthesis of natural phytoplankton. Photochem Photobiol 65:264–265CrossRefGoogle Scholar
  25. Cullen JJ, Neale PJ (1997b) Biological weighting functions for describing the effects of ultraviolet radiation on aquatic systems. In: Häder DP (ed) The effects of ozone depletion on aquatic ecosystems. Landes,Austin, Texas, pp 97–118Google Scholar
  26. Cullen JJ, Neale PJ, Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:645–650CrossRefGoogle Scholar
  27. Davidson AT, Marchant HJ (1994) The impact of ultraviolet radiation onPhaeocystisand selected species of Antarctic marine diatoms. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 187–205CrossRefGoogle Scholar
  28. Döhler G (1997) Impact of UV radiation of different wavebands on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural phytoplankton and ice algae in Antarctica. J Plant Physiol 151:550–555CrossRefGoogle Scholar
  29. Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34:418–430CrossRefGoogle Scholar
  30. Dunlap WC, Chalker BE, Oliver JK (1986) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J Exp Mar Biol Ecol 104:239–248CrossRefGoogle Scholar
  31. Dunlap WC, Rae GA, Helbling EW, Villafañe VE, Holm-Hansen 0 (1995) Ultraviolet-absorbing compounds in natural assemblages of Antarctic phytoplankton. Antarct J US 30:323–326Google Scholar
  32. Eilertsen HC (1993) Spring blooms and stratification. Nature 363:24CrossRefGoogle Scholar
  33. Eilertsen EC, Taasen JP, Weslawski JM (1989) Phytoplankton studies in the fjords of West Spitsbergen: physical environment and production in spring and summer. J Plankton Res 11:1245–1260CrossRefGoogle Scholar
  34. Eilertsen HC, Sandberg S, Tollefsen H (1995) Photoperiodic control of diatom spore growth: a theory to explain the onset of phytoplankton blooms. Mar Ecol Prog Ser 116:303–307CrossRefGoogle Scholar
  35. El-Sayed SZ (1984) Productivity of the Antarctic waters - a reappraisal. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin Heidelberg New York, pp 19–34CrossRefGoogle Scholar
  36. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210CrossRefGoogle Scholar
  37. Frederick JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the earth’s surface. Photochem Photobiol 50:443–450CrossRefGoogle Scholar
  38. Garcia-Pichel F (1994) A model for internal shelf-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717CrossRefGoogle Scholar
  39. Gleason JF, Bhartia PK, Herman JR, McPeters R, Newman P, Stolarski R, Flynn L, Larko D, Seftor C, Wellemeyer C, Komhyr WD, Miller AJ, Planet W (1993) Record low global ozone in 1992. Science 260:523–526PubMedCrossRefGoogle Scholar
  40. Häder DP, Worrest RC, Kumar HD, Smith RC (1995) Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio 24:174–180Google Scholar
  41. Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B Biol 38:40–47CrossRefGoogle Scholar
  42. Hegseth EN (1998) Primary production of the northern Barents Sea. Polar Res 17:113–123CrossRefGoogle Scholar
  43. Hegseth EN, Svendsen H, von Quillfeldt CH (1995) Phytoplankton in fjords and coastal waters of northern Norway: environmental conditions and dynamics of the spring bloom. In: Skojdal HR, Hopkins C, Erikstad K, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier, Amsterdam, pp 45–72Google Scholar
  44. Helbling EW, Villafañe VE, Ferrario M, Holm-Hansen O (1992) Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar Ecol Prog Ser 80:89–100CrossRefGoogle Scholar
  45. Helbling EW, Villafañe VE, Holm-Hansen O (1994a) Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 207–227CrossRefGoogle Scholar
  46. Helbling EW, Villafañe VE, Holm-Hansen O (1994b) In situ inhibition of primary production due to ultraviolet radiation in Antarctica. Antarct J US 29:262–263Google Scholar
  47. Helbling EW, Villafañe VE, Holm-Hansen 0 (1995) Variability of phytoplankton distribution and primary production around Elephant island, Antarctica, during 1990–1993. Polar Biol 15:233–246CrossRefGoogle Scholar
  48. Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen O, Villafañe VE (1996a) Photo-acclimation of Antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101CrossRefGoogle Scholar
  49. Helbling EW, Eilertsen HC, Villafañe VE, Holm-Hansen O (1996b) Effects of UV radiation on post-bloom phytoplankton populations in Kvalsund, North Norway. J Photochem Photobiol B Biol 33:255–259CrossRefGoogle Scholar
  50. Helbling EW, Buma AGJ, Boer MK de, Villafañe VE (2001) In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar Ecol Prog Ser 211:43–49CrossRefGoogle Scholar
  51. Hernando M, Carreto JI, Carignan MO, Ferreyra GA, Groâ C (2001) Effects of solar radiation on growth and mycosporine-like amino acids content in an Antarctic diatom. Polar Biol 24: (in pressGoogle Scholar
  52. Heywood RB, Priddle J (1987) Retention of phytoplankton by an eddy. Cont Shelf Res 7:937–955CrossRefGoogle Scholar
  53. Hofmann DJ (1989) Direct ozone depletion in springtime Antarctic lower stratospheric clouds. Nature 337:447–449CrossRefGoogle Scholar
  54. Hofmann DJ (1996) Recovery of Antarctic ozone hole. Nature 384:222–223 Holm-Hansen O (1997) Short-and long-term effects of UVA and UVB on marine phytoplankton productivity. Photochem Photobiol 65:266–267Google Scholar
  55. Holm-Hansen O, El-Sayed SZ, Franceschini GA, Cuhel RL (1977) Primary production and the factors controlling phytoplankton growth in the Southern ocean. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Proc 3rd SCAR Symp Antarct Biol. Smithsonian Institution, Houston, pp 11–50Google Scholar
  56. Holm-Hansen O, Mitchell BG, Hewes CD, Karl DM (1989) Phytoplankton blooms in the vicinity of Palmer Station, Antarctica. Polar Biol 10:49–57CrossRefGoogle Scholar
  57. Holm-Hansen O, Helbling EW, Lubin D (1993a) Ultraviolet radiation in Antarctica: inhibition of primary production. Photochem Photobiol 58:567–570CrossRefGoogle Scholar
  58. Holm-Hansen O, Lubin D, Helbling EW (1993b) Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum, New York, pp 379–425Google Scholar
  59. Horner RA (1980) Ecology and productivity of Arctic sea ice diatoms. Proc 6th Diatom Symp, pp 359–369Google Scholar
  60. Horner RA (1982) Do ice algae produce the Spring phytoplankton bloom in seasonally ice-covered waters? Proc 7th Diatom Symp, pp 401–409Google Scholar
  61. Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 93–110CrossRefGoogle Scholar
  62. Karentz D, Cleaver JE, Mitchell DL (199la) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27:326–341CrossRefGoogle Scholar
  63. Karentz D, McEuen FS, Land MC, Dunlap WC (1991b) A survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166CrossRefGoogle Scholar
  64. Karsten U, Wiencke C (1999) Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red algaPalmaria palmatafrom Spitsbergen (Norway). J Plant Physiol 125:407–415CrossRefGoogle Scholar
  65. Karsten U, Bischof K, Hanelt D, Tug H, Wiencke C (1999) The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalgaDevaleraea ramentacea(Rhodophyta). Physiol Plant 105:58–66CrossRefGoogle Scholar
  66. Kerr JB, McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034PubMedCrossRefGoogle Scholar
  67. Kim DS, Watanabe Y (1993) The effect of long-wave ultraviolet radiation (UV-A) on the photosynthetic activity of natural population of freshwater phytoplankton. Ecol Res 8:225–234CrossRefGoogle Scholar
  68. Kirchhoff VWJH, Schuch NJ, Pinheiro DK, Harris JM (1996) Evidence for an ozone hole perturbation at 30° south. Atm Environ 30:1481–1488CrossRefGoogle Scholar
  69. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 509 ppCrossRefGoogle Scholar
  70. Laurion I, Vincent WF (1998) Cell size versus taxonomic composition as determinants of UV-sensitivity in natural phytoplankton communities. Limnol Oceanogr 43:1774–1779Google Scholar
  71. Lesser MP, Cullen JJ, Neale PJ (1994) Carbon uptake in a marine diatom during acute exposure to ultraviolet B radiation: relative importance of damage and repair. J Phycol 30:183–192CrossRefGoogle Scholar
  72. Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271CrossRefGoogle Scholar
  73. Lubin D, Jensen EH (1995) Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature 377:710–713CrossRefGoogle Scholar
  74. Lubin D, Mitchell BG, Frederick JE, Alberts AD, Booth CR, Lucas T, Neuschuler D (1992) A contribution toward understanding the biospherical significance of Antarctic ozone depletion. J Geophys Res 97:7817–7828CrossRefGoogle Scholar
  75. Madronich S (1992) Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the earth’s surface. Geophys Res Lett 19:37–40CrossRefGoogle Scholar
  76. Madronich S (1993) The atmosphere and UV-B radiation at ground level. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum Press, New York, pp 1–39Google Scholar
  77. Mitchell BG, Brody EA, Holm-Hansen O, McClain CR, Bishop J (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol Oceanogr 36:1662–1677CrossRefGoogle Scholar
  78. Müller R, Crutzen PJ, Gross JU, Brühl C, Russell JM III, Gernandt H, McKenna DS (1997) Severe chemical ozone loss in the Arctic during the winter of 1995–96. Nature 389:709–712CrossRefGoogle Scholar
  79. Neale PJ, Kieber DJ (2000) Assessing biological and chemical effects of UV in the marine environment: spectral weighting functions. In: Hester RE, Harrison RM (eds) Causes and environmental implications of increased U.V.-B. radiation. Royal Society of Chemistry, Cambridge, pp 61–83CrossRefGoogle Scholar
  80. Neale PJ, Lesser MP, Cullen JJ (1994) Effects of ultraviolet radiation on the photosynthesis of phytoplankton in the vicinity of McMurdo station, Antarctica. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 125–142CrossRefGoogle Scholar
  81. Neale PJ, Cullen JJ, Davis RF (1998a) Inhibition of marine photosynthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Weddell-Scotia Confluence during the austral spring. Limnol Oceanogr 43:433–448CrossRefGoogle Scholar
  82. Neale PJ, Davis RF, Cullen JJ (1998b) Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392:585–589CrossRefGoogle Scholar
  83. Neale PJ, Fritz JJ, Davis RF (2001) Effects of UV on photosynthesis of Antarctic phytoplankton: models and application to coastal and pelagic assemblages. Rev Chil Hist Nat 74:283–292CrossRefGoogle Scholar
  84. Orce VL, Helbling EW (1997) Latitudinal UVR-PAR measurements in Argentina: extent of the “ozone hole”. Global Plan Change 15:113–121CrossRefGoogle Scholar
  85. Orsi AH, Whitworth T III, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res Part I 42:641–673CrossRefGoogle Scholar
  86. Priddle J (1990) The Antarctic planktonic ecosystem. In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, UK, pp 25–34Google Scholar
  87. Rex M, Harris NRP, von der Gathen P, Lehman R, Braathen GO, Reimer E, Beck A, Chipperfield MP, Alfier R, Allaart M, O’Connor F, Dier H, Dorokhov V, Fast H, Gil M, Kyro E, Litynska Z, Mikkelsen IS, Molyneux M, Nakane H, Notholt J, Rummukainen M, Viatte P, Wenger J (1997) Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature 389:835–838CrossRefGoogle Scholar
  88. Rex M, von der Gathen P, Braathen GO, Harris NRP, Reimer E, Beck A, Alfier R, KrügerCarstensen R, Chipperfield MP, De Backer H, Balis D, O’Connor F, Dier H, Dorokhov V, Fast H, Gamma A, Gil M, Kyro E, Litynska Z, Mikkelsen IS, Molyneux M, Murphy G, Reid SJ, Rummukainen M, Zerefos C (1999) Chemical ozone loss in the Arctic winter 1994/95 as determined by the match technique. J Atm Chem 32:35–59CrossRefGoogle Scholar
  89. Sakshaug E (1990) Arctic planktonic ecosystems In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, UK, pp 47–52Google Scholar
  90. Sakshaug E, Holm-Hansen O (1984) Factors governing pelagic production in polar oceans. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin Heidelberg New York, pp 1–18CrossRefGoogle Scholar
  91. Sakshaug E, Slagstad D (1990) Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. In: Sakshaug E, Hopkins CCE, Oritsland NA (eds) Proc Pro Mare Symp Polar Mar Ecol, pp 69–85Google Scholar
  92. Santee ML, Read WG, Waters JW, Froidevaux L, Manney GL, Flower DA, Jarnot RF, Harwood RS, Peckham GE (1995) Interhemispheric differences in polar stratospheric HNO3H2O, ClO, and O3. Science 267:849–852PubMedCrossRefGoogle Scholar
  93. Schofield O, Kroon BMA, Prézelin BB (1995) Impact of ultraviolet-B radiation on photosystem II activity and its relationship to the inhibition of carbon fixation rates for Antarctic ice algae communities. J Phycol 31:703–715CrossRefGoogle Scholar
  94. Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Global Change Biol 2:527–545CrossRefGoogle Scholar
  95. Smith RC, Cullen JJ (1995) Effects of UV radiation on phytoplankton. Rev Geophys Supp1:1211–1223Google Scholar
  96. Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP, Coley TL, Karentz D, Maclntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959PubMedCrossRefGoogle Scholar
  97. Smith WO (1991) Nutrient distributions and new production in polar regions: parallels and contrasts between the Arctic and Antarctic. Mar Chem 35:245–257CrossRefGoogle Scholar
  98. Smith WO, Nelson DM, Mathot S (1999) Phytoplankton growth rates in the Ross Sea, Antarctica, determined by independent methods: temporal variations. J Plankton Res 21:1519–1536CrossRefGoogle Scholar
  99. Squire VA (1990) Sea ice: its formation, distribution and properties. In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, UK, pp 3–8Google Scholar
  100. Sundbäck K, Odmark S, Wulff A, Nilsson C, Wängberg SA (1997) Effects of enhanced UVB radiation on a marine benthic diatom mat. Mar Biol 128:171–179CrossRefGoogle Scholar
  101. Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Perm Int Explor Mer 18:287–295Google Scholar
  102. Teramura AH, Sullivan JH (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39:463–473CrossRefGoogle Scholar
  103. Theriot E, Fryxell GA (1985) Multivariate statistical analysis of net diatom species distributions in the southwestern Atlantic and Indian Ocean. Polar Biol 5:23–30CrossRefGoogle Scholar
  104. Townsend DW, Keller MD, Sieracki ME, Ackleson SG (1992) Spring phytoplankton blooms in the absence of vertical water column stratification. Nature 360:59–62CrossRefGoogle Scholar
  105. Vernet M, Smith RC (1997) Effects of ultraviolet radiation on the pelagic Antarctic ecosystem. In: Häder DP (ed) The effects of ozone depletion on aquatic ecosystems. Landes, Austin, Texas, pp 247–265Google Scholar
  106. Vernet M, Brody EA, Holm-Hansen O, Mitchell BG (1994) The response of Antarctic phytoplankton to ultraviolet radiation: absorption, photosynthesis, and taxonomic composition. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 143–158CrossRefGoogle Scholar
  107. Villafañe VE, Helbling EW, Holm-Hansen O (1995a) Spatial and temporal variability of phytoplankton biomass and taxonomic composition around Elephant Island, Antarctica, during the summers of 1990–1993. Mar Biol 123:677–686CrossRefGoogle Scholar
  108. Villafañe VE, Helbling EW, Holm-Hansen O, Chalker BE (1995b) Acclimatization of Antarctic natural phytoplankton assemblages when exposed to solar ultraviolet radiation. J Plankton Res 17:2295–2306CrossRefGoogle Scholar
  109. Villafañe VE, Helbling EW, Holm-Hansen O, Díaz H (1995c) Long term responses by Antarctic phytoplankton to ultraviolet radiation. Antarct J US 30:320–322Google Scholar
  110. Villafañe VE, Andrade M, Lairana AV, Zaratti F, Helbling EW (1999) Inhibition of phytoplankton photosynthesis by solar ultraviolet radiation: studies in Lake Titicaca, Bolivia. Freshwater Biol 42:215–224CrossRefGoogle Scholar
  111. Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev 1:1–12Google Scholar
  112. Von Quillfeldt CH (1996) Ice algae and phytoplankton in north Norwegian and Arctic waters: species composition, succession and distribution. PhD Thesis, University of Tromso, Tromso, NorwayGoogle Scholar
  113. Wängberg SA, Selmer JS, Gustayson K (1996) Effects of UV-B radiation on biomass and composition in marine phytoplankton communities. Sci Mar 60 (Suppl 1):81–88Google Scholar
  114. Weiler CS, Penhale PA (1994) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, 257 ppCrossRefGoogle Scholar
  115. Worrest RC, Thomson BE, Dyke H van (1981a) Impact of UV-B radiation upon estuarine microcosms. Photochem Photobiol 33:861–867CrossRefGoogle Scholar
  116. Worrest RC, Wolniakowski KU, Scott JD, Broker DL, Thomson BE, Dyke H van (198lb) Sensitivity of marine phytoplankton to UV-B radiation: impact upon a model ecosystem. Photochem Photobiol 33:223–227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • E. W. Helbling
  • V. E. Villafañe

There are no affiliations available

Personalised recommendations