Skip to main content

Birth of Dopamine: A Cinderella Saga

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 1))

Abstract

The history of dopamine goes back to the early part of the previous century. This compound was synthesized by Waser and Sommer (1923). Its physiological significance became evident through the discovery of dopa decarboxylase in mammalian tissue by Holtz et al. (1938) and through its identification as a normal urinary constituent (Holtz et al. 1942). In 1939 it was proposed to be an intermediate in the biosynthesis of adrenaline (Blaschko et al. 1957). However, in certain tissues, including adrenergic nerves, dopamine was found to occur in amounts exceeding those to be expected from a catecholamine precursor (Schümann 1956; Euler and Lishajko 1957). Thus Euler and Lishajko (1957) and Blaschko (1957) speculated on some additional function of dopamine, besides being a precursor. However, the possible nonprecursor function of dopamine in peripheral tissues seemed to be unrelated to neurotransmission, because its occurrence in greater than precursor amounts seemed to be limited to ruminants, and in ruminant tissues it correlated strongly to the occurrence of mast cells (Bertler et al. 1959). What function dopamine might serve in the mast cells of ruminants remained completely unknown. Speculations about an independent role of dopamine had thus ended up in a blind alley.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK, Bunney BS (1974) Pre- and postsynaptic feedback mechanisms in central dopaminergic neurons. In: Seeman P, Brown GM (eds) Frontiers of Neurology and Neuroscience Research, Toronto: University of Toronto Press 4–11

    Google Scholar 

  • Andén N-E, Roos B-E, Werdinius B (1964a) Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci 3:149–158

    Article  Google Scholar 

  • Andén N-E, Carlsson A, Dahlström A, Fuxe K, Hillarp N-å, Larsson K (1964b) Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3:523–530

    Article  PubMed  Google Scholar 

  • Andén N-E, Butcher SG, Corrodi H, Fuxe K, Ungerstedt U (1970a) Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol 11:303–314

    Article  PubMed  Google Scholar 

  • Andén N-E, Carlsson A, Kerstell J, Magnusson T, Olsson R, Roos B-E, Steen B, Steg G, Svanborg A, Thieme G, Werdinius B (1970b) Oral L-DOPA treatment of Parkinsonism. Acta Med Scand 187:247–255

    Article  PubMed  Google Scholar 

  • Axelrod J (1964) The uptake and release of catecholamines and the effect of drugs. Prog Brain Res 8:81–89

    Article  CAS  Google Scholar 

  • Barbeau A, Sourkes TL, Murphy GF (1962) Les catecholamines dans la maladie de Parkinson. In: Monoamines et Système nerveux central. Gènéve: Georg et Cie S.A. 247–262

    Google Scholar 

  • Barbeau A, Sourkes TL, Murphy GF (1962) Les catecholamines dans la maladie de Parkinson. In: Monoamines et Systeme nerveux central. Geneve: Georg et Cie S.A. 247–262

    Google Scholar 

  • Bertler å, Rosengren E (1959) Occurrence and distribution of dopamine in brain and other tissues. Experientia 15:10

    Article  PubMed  CAS  Google Scholar 

  • Bertler å, Carlsson A, Rosengren E (1956) Release by reserpine of catecholamines from rabbits’ hearts. Naturwissenschaften 22:521 (only)

    Article  Google Scholar 

  • Bertler å, Falck B, Hillarp N-å, Torp A (1959) Dopamine and chromaffin cells. Acta Physiol Scand 47:251–258

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der L–3, 4-Dioxyphenylalanin (= L-DOPA)-Effekt bei der Parkinson-Akinese. Wien Klin Wschr 73:787–788

    PubMed  CAS  Google Scholar 

  • Blascko H. The specific action of L-dopa decarboxylase (1939) J Physiol (Lond) 96:50P-51P

    Google Scholar 

  • Blaschko H (1957) Metabolism and storage of biogenic amines. Experientia 13:9–12

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11:490–493

    PubMed  CAS  Google Scholar 

  • Carlsson A (1966) Physiological and pharmacological release of monoamines in the central nervous System. In: von Euler US, Rosell S, Uvnäs B (eds) Mechanisms of Release of Biogenic Amines. Oxford: Pergamon Press 331–346

    Google Scholar 

  • Carlsson A (1975) Dopaminergic autoreeeptors. In: Almgren O, Carlsson A, Engel J (eds) Chemical Tools in Catecholamine Research, Vol. II. Amsterdam: North-Holland Publishing Company 219–225

    Google Scholar 

  • Carlsson A (1987) Perspectives on the discovery of central monoaminergic neurotransmission. Ann Rev Neurosci 10:19–40

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1998) Autobiography. In: Squire LR (ed) The History of Neuroscience in Autobiography, Volume 2. San Diego, Academic Press 28–66

    Google Scholar 

  • Carlsson A, Hillarp N-å (1956) Release of adrenaline from the adrenal medulla of rabbits produced by reserpine. Kgl Fysiogr Sällsk Förhandl 26, no 8

    Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol (Kbh) 20:140–144

    Article  CAS  Google Scholar 

  • Carlsson A, Waldeck B (1958) A fluorimetric method for the determination of dopamine (3-hydroxytyramine). Acta physiol scand 44:293–298

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Shore PA, Brodie BB (1957a) Release of Serotonin from blood platelets by reserpine in vitro. J Pharmacol Exp Hier 120:334–339

    CAS  Google Scholar 

  • Carlsson A, Rosengren E, Bertler å, Nilsson J (1957b) Effect of reserpine on the metabolism of catecholamines. In: Garattini S, Ghetti V (eds) Psychotropic Drugs. Amsterdam: Elsevier 363–372

    Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957c) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature (Lond) 180:1200 (only)

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127:471 (only)

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Falck B, Hillarp N-å (1962a) Cellular localization of brain monoamines. Acta physiol scand 56, Suppl 196:1–27

    Google Scholar 

  • Carlsson A, Hillarp N-å, Waldeck B (1962b) A Mg++-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Medicina Experimentalis 6:47–53

    PubMed  CAS  Google Scholar 

  • Carlsson A, Falck B, Fuxe K, Hillarp N-å (1964) Cellular localization of monoamines in the spinal cord. Acta Physiol Scand 60:112–119

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Hjorth S, Carlsson A (1985) Dopamine receptor agonists: Mechanisms underlying autoreceptor selectivity. II. Theoretical Considerations. J Neural Transm 62:171–207

    Article  PubMed  CAS  Google Scholar 

  • Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of Parkinsonism. N Engl J Med 276:374–379

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A, Carlsson A (1986) Making visible the invisible. (Recollections of the first experiences with the histochemical fluorescence method for visualization of tissue monoamines.) In: Parnham MJ, Bruinvels J (eds) Discoveries in Pharmacology. Vol 3, Amsterdam/New York/Oxford: Elsevier, 97–128

    Google Scholar 

  • Degkwitz R, Frowein R, Kulenkampff C, Mohs U (1960) über die Wirkungen des L-dopa beim Menschen und deren Beeinflussung durch Reserpin, Chlorpromazin, Iproniazid und Vitamin B6. Klin Wschr 38:120–123

    Article  PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wschr 38:1236–1239

    Article  PubMed  CAS  Google Scholar 

  • Ekesbo A, Andrén PE, Gunne LM, Tedroff J (1997) (—)-OSU6162 inhibits levodopainduced dyskinesias in a monkey model of Parkinson’s disease. Neuroreport 8:2567–2570

    Article  PubMed  CAS  Google Scholar 

  • Engel J, Carlsson A (1977) Catecholamines and behavior. Curr Developments in Psychopharmacol 4:1–32

    CAS  Google Scholar 

  • Euler USv, Hamberg U (1949) Colorimetric determination of noradrenaline and adrenaline. Acta Physiol Scand 19:74–84

    Article  CAS  Google Scholar 

  • Euler USv, Lishajko F (1957) Dopamine in mammalian lung and spieen. Acta Physiol Pharmacol Neerl 6:295–303

    Google Scholar 

  • Euler USv, Rosell S, Uvnäs B, eds (1966) Mechanisms of Release of Biogenic Amines. Oxford: Pergamon Press 331–346

    Google Scholar 

  • Farnebo L-O, Hamberger B (1971) Drug-induced changes in the release of 3-Hmonoamines from field stimulated rat brain slices. Acta Physiol Scand Suppl 371:35–44

    Article  PubMed  CAS  Google Scholar 

  • Foley P (2000) The L-DOPA story revisited. Further surprises to be expected? The contribution of Isamo Sano to the investigation of Parkinson’s disease. In: Riederer P, Calne DB, Horowski R, Mizuno Y, Olanow CV, Poewe W, Youdim MBH (eds) Advances in Research on Neurodegeneration. Wien: Springer Verlag 8:1–20

    Google Scholar 

  • Folkow B, Nilsson H (1997) Transmitter release at adrenergic nerve endings: Total exocytosis or fractional release? News Physiol Sci 12:32–36

    CAS  Google Scholar 

  • Gefvert O, Lindström LH, Dahlbäck O, Sonesson C, Waters N, Carlsson A, Tedroff J (2000) (—)-OSU6162 induces a rapid onset of antipsychotic effect after a single dose. A double-blind study. Nordic J Psychiat 54/2:93–94

    Google Scholar 

  • Hansson LO, Waters N, Holm S, Sonesson C (1995) On the quantitative structure-activity relationships of meta-substituted (S)-phenylpiperidines, a class of preferential dopamine D2 autoreceptor ligands. Modeling of dopamine synthesis and release in vivo by means of partial least Squares regression. J Med Chem 38:3121–3131

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T. Thesis (dy1968) Stockholm: I Häggströms Tryckeri AB

    Google Scholar 

  • Holtz P, Heise R, Lüdtke K (1938) Fermentativer Abbau von 1-Dioxyphenylalanin durch die Niere. Arch Exp Path Pharmakol 191:87

    Article  CAS  Google Scholar 

  • Holtz P, Credner K, Koepp W (1942) Die enzymatische Entstehung von Oxytyramin im Organismus und die physiologische Bedeutung der Dopa decarboxylase. Arch Exp Path Pharmakol 200:356

    Article  CAS  Google Scholar 

  • Hornykiewicz O (1966) Metabolism of brain dopamine in human Parkisonism: Neurochemical and clinical aspects. In: Costa E, Côté LKJ, Yahr MD (eds) Biochemistry and Pharmacology of the Basal Ganglia. New York: Raven Press 171–186

    Google Scholar 

  • Hornykiewicz O (1992) From dopamine to Parkinson’s disease: A personal research record. In: Samson F, Adelman G (eds) The Neurosciences: Paths of Discovery II. Boston: Birkhäuser 125–148

    Google Scholar 

  • Jönsson L-E, änggård E, Gunne L-M (1971) Blockade of intravenous amphetamine euphoria in man. Clin Pharmacol Ther 12:889–896

    PubMed  Google Scholar 

  • Kane J, Ingenito G, Ali M (2000) Efficacy of Aripiprazole in psychotic disorders: Comparison with haloperidol and placebo. Poster presented at CINP Meeting

    Google Scholar 

  • Kanigel R (1986) Apprentice to Genius, The Making of a Scientific Dynasty. New York: Macmillan 1–271

    Google Scholar 

  • Kebabian JW, Greengard P (1971) Dopamine-sensitive adenylyl cyclase: possible role in synaptic transmission. Science 174:1346–1349

    Article  PubMed  CAS  Google Scholar 

  • Kehr W, Carlsson A, Lindqvist M, Magnusson T, Atack C (1972) Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J Pharm Pharmacol 24:744–747

    Article  PubMed  CAS  Google Scholar 

  • Kirshner N (1962) Uptake of catecholamines by a particulate fraction of the adrenal medulla. J Biol Chem 237:2311–2317

    PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Corey PK, Lahti RA, Carlsson A, Tamminga CA (1998) Antipsychotic properties of the partial dopamine agonist (—)–3-(3-hydroxyphenyl)-N-n-propylpiperidine (preclamol) in schizophrenia. Biol Psychiat 43:2–11

    Article  PubMed  CAS  Google Scholar 

  • Lundborg P (1963) Storage function and amine levels of the adrenal medullary granules at various intervals after reserpine treatment. Experientia 19:479

    Article  PubMed  CAS  Google Scholar 

  • Malmfors T (1965) Studies on adrenergic nerves. Acta Physiol Scand 64, Suppl 248:1–93

    CAS  Google Scholar 

  • Montagu KA (1957) Catechol Compounds in rat tissues and in brains of different animals. Nature (Lond) 180:244–245

    Article  CAS  Google Scholar 

  • Nakajima T (1991) Discovery of dopamine deficiency and the possibility of dopa therapy in Parkinsonism. In: Nagatsu T, Narabayashi H, Yoshida M (eds) Parkinson’s Disease. From Clinical aspects to Molecular Basis. Wien: Springer Verlag 13–18

    Chapter  Google Scholar 

  • Nybäck H, Sedvall G (1970) Further studies on the accumulation and disappearance of catecholamines formed from tyrosine-14-C in mouse brain. Eur J Pharmacol 10:193–205

    Article  PubMed  Google Scholar 

  • Pirtosek Z, Merello M, Carlsson A, Stern G (1993) Preclamol and Parkinsonian fluctuations. Clin Neuropharmacol 16:550–554

    Article  PubMed  CAS  Google Scholar 

  • Pletscher A, Shore PA, Brodie BB (1955) Serotonin release as a possible mechanism of reserpine action. Science 122:374–375

    Article  PubMed  CAS  Google Scholar 

  • Sacks O (1973) Awakenings. London: Gerald Duckworth 1–408

    Google Scholar 

  • Sano I (1959) Biochemical studies of aromatic monoamines in the brain. In: Japanese Medicine in 1959. The report on scientific meetings in the 15th General Assembly of the Japan Medical Congress, Vol.V. 607–615

    Google Scholar 

  • Sano I (2000) Biochemistry of extrapyramidal motor System. Shinkey Kenkyu no Shinpo (Adv Neurol Sei) 1960; 5:42–48. English translation in: Parkinsonism and Related Disorders 6:3–6

    Google Scholar 

  • Schümann HJ (1956) Nachweis von Oxytyramin (Dopamin) in sympathischen Nerven und Ganglien. Arch Exp Path Pharmakol 227:566–573

    Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine reeeptors. Nature 261:717–719

    Article  PubMed  CAS  Google Scholar 

  • Sonesson C, Lin C-H, Hansson L, Waters N, Svensson K, Carlsson A, Smith MW, Wikström H (1994) Substituted (S)-phenylpiperidines and rigid congeners as preferential dopamine autoreceptor antagonists: Synthesis and strueture-activity relationships. J Med Chem 37:2735–2753

    Article  PubMed  CAS  Google Scholar 

  • Svensson K, Hjorth S, Clark D, Carlsson A, Wikström H, Andersson B, Sanchez D, Johansson AM, Arvidsson L-E, Hackseil U, Nilsson JLG (1986) (+)-UH 232 and (+)-UH 242: Novel stereoselective DA receptor antagonists with preferential action on autoreeeptors. J Neural Transm 65:1–27

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Schaffer MH, Smith RC, Davis JM (1978) Schizophrenie Symptoms improve with apomorphine. Science 200:567–568

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Cascella NG, Lahti RA, Lindberg M, Carlsson A (1992) Pharmacologic properties of (—)–3PPP (Preclamol) in man. J Neural Transm 88:165–175

    Article  CAS  Google Scholar 

  • Tedroff J, Ekesbo A, Sonesson C, Waters N, Carlsson A (1999) Long-lasting improvement following (—)-OSU6162 in a patient with Huntington’ disease. Neurology 53:1605–1606

    Article  PubMed  CAS  Google Scholar 

  • Vane JR, Wolstenholme GEW, O’Connor M (eds) (1960) Ciba Foundation Symposium on Adrenergic Mechanisms, London: J & A Churchill Ltd 1–632

    Google Scholar 

  • Waser E, Sommer H (1923) Synthesis of 3,4-dihydroxyphenylethyl amine. Helv Chim Acta 6:54–61

    Article  CAS  Google Scholar 

  • Weil-Malherbe H, Bone AD (1957) Intracellular distribution of catecholamines in the brain. Nature 180:1050–1051

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carlsson, A. (2002). Birth of Dopamine: A Cinderella Saga. In: Di Chiara, G. (eds) Dopamine in the CNS I. Handbook of Experimental Pharmacology, vol 154 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56051-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56051-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62726-2

  • Online ISBN: 978-3-642-56051-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics