Another Random Scrambling of Digital (t,s)-Sequences

  • Henri Faure
  • Shu Tezuka


This paper presents a new random scrambling of digital (t,s)-sequences and its application to two problems from finance, showing the usefulness of this new class of randomized low-discrepancy sequences; moreover the simplicity of the construction allows efficient implementation and should facilitate the derandomization in this particular class; also the search of the effective dimension in high dimensional applications should be improved by the use of such scramblings.


Interest Rate Sample Path Effective Dimension Generator Matrice Expected Valu 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Faure, Discrépance de suites associées à un système de numération (en dimension 1), Bull. Soc. math. France 109 (1981), 143–182.MathSciNetMATHGoogle Scholar
  2. 2.
    H. Faure, Using Permutations to Reduce Discrepancy, Journal of Computational and Applied Mathematics 31 (1990), 97–103.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    H. Faure, Good Permutations for Extreme Discrepancy, Journal of Number Theory 41 (1992), 47–56.MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Faure, Variations on (0,s)-sequences, Journal of Complexity, to appear.Google Scholar
  5. 5.
    F.J. Hickernell, The Mean Square Discrepancy of Randomized Nets, ACM Trans. Model.Comput.Simul. 6 (1996), 274–296.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    J. Matousek, On the L 2-discrepancy for Anchored boxes, Journal of Complexity 14 (1998), 527–556.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    J. Matousek, Geometric Discrepancy: An Illustrated Guide, Springer, 1999.Google Scholar
  8. 8.
    H. Niederreiter, Point Sets and Sequences with Small Discrepancy, Monatsh. Math. 104 (1987), 273–337.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics 63, SIAM, 1992.Google Scholar
  10. 10.
    H. Niederreiter and C.P. Xing, Nets, (t,s)-sequences and Algebraic Geometry, in Lecture Notes in Statistics 138 (P. Hellekalek and G.% Larcher, Ed.) Springer (1998), 267–302.Google Scholar
  11. 11.
    A. Owen, Randomly Permuted (t,m,s)-nets and (t,s)-sequences, in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P. Shiue, Ed.) Springer-Verlag (1995), 299–317.Google Scholar
  12. 12.
    S. Tezuka, Polynomial Arithmetic Analogue of Halton Sequences, ACM Tomacs 3-2 (1993), 99-107.Google Scholar
  13. 13.
    S. Tezuka, A Generalization of Faure Sequences and its Efficient Implementation, Research Report IBM RT0105 (1994), 1–10.Google Scholar
  14. 14.
    S. Tezuka, Uniform Random Numbers: Theory and Practice, Kluwer Academic Publishers, Boston, 1995.MATHCrossRefGoogle Scholar
  15. 15.
    S. Tezuka, Quasi-Monte Carlo — Discrepancy between Theory and Practice, mcqmc2000, Springer-Verlag, in this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Henri Faure
    • 1
  • Shu Tezuka
    • 2
  1. 1.Institut de Mathématiques de LuminyU.P.R. 9016 CNRSMarseille, Cedex 09France
  2. 2.IBM Tokyo Research LaboratoryYamato, KanagawaJapan

Personalised recommendations