Skip to main content

Molecular Pathogenesis of Cerebral Aneurysms: Current Concepts and Future Directions

  • Chapter
Cerebral Blood Flow

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 37))

  • 174 Accesses

Abstract

Cerebral aneurysms (CAs) are pathological dilations of cerebral arteries, most commonly seen at points of bifurcation in the major arteries forming the circle of Willis at the base of the brain. CAs are relatively common with a prevalence estimated to be as high as 6% in autopsy specimens [1,2]. Each year in the U.S., more than 30,000 people experience a subarachnoid hemorrhage (SAH) from the rupture of such an aneurysm. Unfortunately, 50% of these patients will die either at the moment of rupture or shortly thereafter. Another 25% will suffer devastating neurological complications resulting in loss of motor or cognitive function with consequent institutionalization and with enormous costs to the individual as well as to the system that has to care for a chronic patient. Finally, even the remaining 25% will experience protracted hospitalization and some degree of cognitive or neurological impairment. In contrast, operative repair of an unruptured CA has a mortality of less than 2.5% and morbidity of less then 6% [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stehbens WE. Aneurysms and anatomical variations of cerebral arteries. Arch Pathol 1963; 75:45–64

    PubMed  CAS  Google Scholar 

  2. Chyatte D. The epidemiology, genetics and clinical behavior of intracranial aneurysms. In: Awad IA, ed. Current Management of Cerebral Aneurysms, USA. Park Ridge, IL: American Association of Neurological Surgeons; 1995: 1–20

    Google Scholar 

  3. Runkainen A, Puraneu M, Herneisniemi J. Intracranial aneurysms: MR angiographic screening in 400 asymptomatic individuals with increased familial risk. Radiology 1995; 195:35–40

    Google Scholar 

  4. Elliot JP, LeRoux PD, Ransom G, Winn R. Predicting length of hospital stay and cost by aneurysm grade on admission. J Neurosurg 1996; 85: 388–391

    Article  Google Scholar 

  5. Chambers WR, Harper BF, Simpson JR. Familial incidence of congenital aneurysms of cerebral arteries: Report of cases of ruptured aneurysms in father and son. JAMA 1954; 155: 358–359

    CAS  Google Scholar 

  6. The International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms — Risk of rupture and risks of surgical intervention. NEJM 1998; 339(24): 1725–1733

    Article  Google Scholar 

  7. Orz Y, Kobayashi S, Osawa M, et al. Aneurysm size: A prognostic factor for rupture. Br J Neurosurg 1997; 11: 144–149

    Article  PubMed  CAS  Google Scholar 

  8. Rosenorn J, Eskesen V. Patients with unruptured intracranial saccular aneurysms: Clinical features and outcome according to size. Br J Neurosurg 1994; 8: 73–78

    Article  PubMed  CAS  Google Scholar 

  9. de Braekelleer M, Pérusse L, Cantin L, Bouchard J-M, Mathieu J. A study of inbreeding and kinship in intracranial aneurysms in the Saguenay Lac-Saint-Jean region (Quebec, Canada). Ann Hum Genet 1996; 60: 99–104

    Article  Google Scholar 

  10. Schievink WI, Torres VE, Piepgras DG, Wiebers DO. Saccular intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 1992; 3: 88–95

    PubMed  CAS  Google Scholar 

  11. Suter W. Das kongenitale Aneurysma der basalen Hirnarterien und Cystennieren. Schweiz Med Wochenschr 1949; 79: 471–476

    PubMed  CAS  Google Scholar 

  12. Chauveau D, Pirson Y, Verellen-Dumoulin C, Macnicol A, Gonzalo A, Grunfeld JP. Intracranial aneurysms in autosomal dominant polycystic kidney disease. Kidney Int 1994; 45:1140–1146

    Article  PubMed  CAS  Google Scholar 

  13. Chauveau D, Sirieix M-E, Schillenger F, Legendre C, Grunfeld J-P. Recurrent rupture of intracranial aneurysms in autosomal dominant polycystic kidney disease. Br Med J 1990; 301: 966–967

    Article  CAS  Google Scholar 

  14. Hughes R, Chapman A, Rubinstein D, Stears J, Johnson A, Gabow P. Recurrent intracranial aneurysms (ICA) in autosomal dominant polycystic kidney disease (ADPKD). Stroke 1996; 27: 178 (abstr)

    Google Scholar 

  15. Harris PC, Ward CJ, Peral B, Hughes J. Autosomal dominant polycystic kidney disease: Molecular analysis. Hum Mol Genet 1995; 4: 1745–1749

    PubMed  CAS  Google Scholar 

  16. Skirgaudas M, Awad IA, Kim J, Rothbart D, Criscuolo G. Expression of angiogenesis factors and selected vascular wall matrix proteins in intracranial saccular aneurysms. Neurosurgery 1996; 39(3): 537–547

    PubMed  CAS  Google Scholar 

  17. Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K, Shih TS, Jacks T, Pawson T. Vascular system defects and neuronal apoptosis in mice lacking RAS GTPase-activating protein. Nature 1995; 377: 695–701

    Article  PubMed  CAS  Google Scholar 

  18. Beighton P. The Ehlers-Danlos syndromes, in Beighton P (ed): McKusick’s Heritable Disorders of Connective Tissue. St Louis, Mosby, 1993, ed 5: 189–251

    Google Scholar 

  19. Byers PH. Ehlers-Danlos syndrome Type IV: a genetic disorder in many guises. J Invest Dermatol 1995; 105: 311–313

    Article  PubMed  CAS  Google Scholar 

  20. Pope FM, Kendall BE, Slapak GI, Kapoor R, McDonald WI, Compston DAS, Mitchell R, Hope DT, Millar-Craig MW, Dean JCS, Johnston AW, Lynch PG, Sarathchandra P, Narcisi P, Nicholls AC, Richards AJ, Mackenzie JL. Type III collagen mutations cause fragile cerebral arteries. Br J Neurosurg 1991; 5: 551–574

    Article  PubMed  CAS  Google Scholar 

  21. Steinmann B, Royce PM, Superti-Furga A. The Ehlers-Danlos syndromes, in Royce PM, Steinmann B (eds): Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects. New York, Wiley-Liss, 1993: 351–407

    Google Scholar 

  22. Neil-Dwyer G, Bartlett JR, Nicholls AC, Narcisi P, Pope FM. Collagen deficiency and ruptured cerebral aneurysms: A clinical and biochemical study. J Neurosurg 1983; 59: 16–20

    Article  PubMed  CAS  Google Scholar 

  23. Brega KE, Seltzer WK, Munro LG, Breeze RE. Genotypic variations of type III collagen in patients with cerebral aneurysms. Surg Neurol 1996; 46: 253–257

    Article  PubMed  CAS  Google Scholar 

  24. Powell JT, Adamson J, MacSweeney STR. Genetic variants of collagen and abdominal aortic aneurysm. Eur J Vas Surg 1991; 5: 145–148

    Article  CAS  Google Scholar 

  25. Acqui M, Ferrante L, Mastronardi L. Alteration of the collagen type III/type I ratio and intracranial saccular aneurysms in GH-secreting hypophyseal adenomas. Ital J Neurol Sci 1988; 9(4): 356–358

    Article  Google Scholar 

  26. De Paepe A, van Landegem W, de Keyser F, de Reuck J. Association of multiple intracranial aneurysms and collagen type III deficiency. Clin Neurol Neurosurg 1988; 90(1): 53–56

    Article  PubMed  Google Scholar 

  27. Neil-Dwyer G, Bartlett JR, Nicholls AC. Collagen deficiency and ruptured cerebral aneurysms. J Neurosurg 1983; 59: 16–20

    Article  PubMed  CAS  Google Scholar 

  28. Østergaard JR, Oxlund H. Collagen type III deficiency in patients with rupture of intracranial saccular aneurysms. J Neurosurg 1987; 67: 690–696

    Article  PubMed  Google Scholar 

  29. Pope FM, Nicholls AC, Narcisi P. Some patients with cerebral aneurysms are deficient in type III collagen. Lancet 1981; 1: 973–975

    Article  PubMed  CAS  Google Scholar 

  30. Leblanc R, Lozano AM, van der Rest M, Guttmann RD. Absence of collagen deficiency in familial cerebral aneurysms. J Neurosurg 1989; 70: 837–840

    Article  PubMed  CAS  Google Scholar 

  31. Kuivaniemi H, Prockop DJ, Wu Y, Madhatheri SL, Kleinert C, Farley JJ, Jokinen A, Stolle C, Majamaa K, Myllylä VV, Norrgård Ö, Schievink WI, Mokri B, Fukawa O, ter Berg JWM, De Paepe A, Lozano AM, Leblanc R, Ryynänen M, Baxter BT, Shikata H, Ferrell RE, Tromp G. Exclusion of mutations in the gene for type III collagen (C0L3A1) as a common cause of intracranial aneurysms or cervical artery dissections: Results from sequence analysis of the coding sequences of type III collagen from 55 unrelated patients. Neurology 1993; 43: 2652–2658

    PubMed  CAS  Google Scholar 

  32. Majamaa K, Savolainen E-R, Mullylä VV. Synthesis of structurally unstable type III procollagen in patients with cerebral artery aneurysm. Biochim Biophys Acta 1992; 138: 191–196

    Google Scholar 

  33. Chyatte D, Lewis I. Gelatinase activity and the occurrence of cerebral aneurysms. Stroke 1997; 28: 799–804

    Article  PubMed  CAS  Google Scholar 

  34. Peters DG, Kassam A, St Jean PL, Yonas H, Ferrell RE. Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke 1999; 30(12): 2612–2616

    Article  PubMed  CAS  Google Scholar 

  35. Hazama F, Hashimoto N. An animal model of cerebral aneurysms. Neuropathol Appl Neurobiol 1987; 13: 77–90

    Article  PubMed  CAS  Google Scholar 

  36. Powell J. Models of arterial aneurysm: for the investigation of pathogenesis and pharmacotherapy: a review. Atherosclerosis 1991; 87: 93–102

    Article  PubMed  CAS  Google Scholar 

  37. de la Monte S, Moore G, Mong M. Risk factors for the development and rupture of intracranial berry aneurysms. Am J Med 1985; 78: 957–964

    Article  PubMed  Google Scholar 

  38. Ferguson G. Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J Neurosurg 1972; 37: 666–677

    Article  PubMed  CAS  Google Scholar 

  39. Holmes B, Harbaugh RE. Traumatic intracranial aneurysms: A contemporary review. J Trauma 1993; 35: 855–860

    Article  PubMed  CAS  Google Scholar 

  40. Bobik A, Campbell JH. Vascular derived growth factors: Cell biology, pathophysiology, and pharmacology. Pharmacol Rev 1993; 45: 1–42

    PubMed  CAS  Google Scholar 

  41. Criscuolo GR. The genesis of peritumoral vasogenic brain edema and tumor cysts: A hypothetical role for tumor-derived vascular permeability factor. Yale J Biol Med 1993; 66: 277–314

    PubMed  CAS  Google Scholar 

  42. Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW. The vascular endothelial growth factor family of peptides. J Cell Biochem 1991; 47: 211–218

    Article  PubMed  CAS  Google Scholar 

  43. Ray JM, Stetler SW. The role of matrix metalloproteinases and their inhibitors in tumor invasion, metastasis, and angiogenesis. Eur Respir J 1994; 7: 2062–2072

    PubMed  CAS  Google Scholar 

  44. Unemori EN, Ferrara M, Bauer EA, Amento EP. Vascular endothelial growth factor induces interstitial collagenase expression in human endothehal cells. J Cell Physiol 1992; 153: 557–562

    Article  PubMed  CAS  Google Scholar 

  45. Barrow DL, Reisner A. Natural history of intracranial aneurysms and vascular malformations. Clin Neurosurg 1993; 40: 3–39

    PubMed  CAS  Google Scholar 

  46. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–1309

    Article  PubMed  CAS  Google Scholar 

  47. Ray JM, Stetler-Stevenson WG. The role of matrix metalloproteases and their inhibitors in tumor invasion, metastasis and angiogenesis. Eur Respir J 1994; 7: 2062–2072

    PubMed  CAS  Google Scholar 

  48. Yirchenco PD, Cheng YS, Colognato H. Laminin forms an independent network in basement membranes. J Cell Biol 1992; 117: 1119–1133

    Article  Google Scholar 

  49. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993; 73: 161–195

    PubMed  CAS  Google Scholar 

  50. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993; 9: 541–573

    Article  PubMed  CAS  Google Scholar 

  51. Stetler-Stevenson WG, Liotta LA, Kleiner DE Jr. Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J 1993; 7: 1434–1441

    PubMed  CAS  Google Scholar 

  52. Hashimoto N, Kim C, Kikuchi H, Kojima M, Kang Y, Hazama F. Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 1987;67: 903–905

    Article  PubMed  CAS  Google Scholar 

  53. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995; 270(20):484–487

    Article  PubMed  CAS  Google Scholar 

  54. Peters, D.G., Kassam, A.B., Heidrich-O’Hare, E., Yonas, H. and Ferrell, R.E., Brufsky, A. Comprehensive Transcript Analysis in Small Quantities of mRNA by SAGE-Lite. Nucleic Acids Res, 1999; 27(24): NAR methods online http://www.nar.oupjournals.org/methods.

    Google Scholar 

  55. Hassler O. Morphological studies on the large cerebral arteries with reference to the aetiology of subarachnoid hemorrhage. 1961, 154:1–145.

    CAS  Google Scholar 

  56. Stehbens WE. Discussion of vascular flow and turbulence. Neurology (Minneap) 1961, 11(4):66–67.

    Google Scholar 

  57. Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circulation Research 1968, 22(2): 165–197.

    PubMed  CAS  Google Scholar 

  58. Locksley HB. Natural history of subarachnoid hemorrhage, intracranial aneurysm and arteriovenous malformations: Based on 6368 cases in a cooperative study. Intracranial Aneurysms and Subarachnoid Hemorrhage: A Cooperative Study, 1969. Journal of Neurosurgery 1966;25(2):219–39.

    Article  PubMed  CAS  Google Scholar 

  59. Andrews RJ, Spiegel PK. Intracranial aneurysms: age, sex, blood pressure and multiplicity in an unselected series of patients. J Neurosurg 1979;51(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  60. Schneider PA, Rossman ME, Bernstein EF, Torem S, Ringelstein EB, Otis SM. Effect of internal carotid artery occlusion on intracranial hemodynamics. Transcranial Doppler evaluation and clinical correlation. Stroke 1988;19(5):589–593.

    Article  PubMed  CAS  Google Scholar 

  61. Sorterberg A, Sorteberg W, Lindegaard KF, Blysent M, Nornes M. Cerebral hemodynamics in internal carotid artery trial occlusion. Acta Neurochir (Wein) 1997;139(11):1066–1073.

    Article  Google Scholar 

  62. Hecker M. Endothelium-derived hyperpolarizing factor — fact or fiction? News Physiol Sci 2000; 15:1–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Kassam, A.B., Peters, D.G., Horowitz, M.B. (2003). Molecular Pathogenesis of Cerebral Aneurysms: Current Concepts and Future Directions. In: Cerebral Blood Flow. Update in Intensive Care Medicine, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56036-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56036-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42684-4

  • Online ISBN: 978-3-642-56036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics