Skip to main content

The Ischemic Penumbra: Pathophysiology and Therapeutic Implications

  • Chapter
  • 182 Accesses

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 37))

Abstract

Under physiological conditions the brain covers its energy demands almost exclusively by oxidation of glucose. Opitz and Schneider [1] were the first to point out that an impairment of energy production induced by constrained oxygen supply affects the energy-consuming processes in a sequential way: first the functional activity of the brain is impaired followed,at a more severe degree of hypoxia, by the suppression of the metabolic activity required to maintain its structural integrity. The concept of two different thresholds of hypoxia for the preservation of functional and structural integrity was later refined by Symon et al. [2] who used a model of focal ischemia to establish the respective rates of blood flow. These studies revealed that EEG and evoked potentials are disturbed at substantially higher flow rates than the potassium gradient across the plasma membranes. Since the preservation of this gradient is a sign of cell viability, Symon and his colleagues proposed that neurons located in the flow range between “electrical” and “membrane” failure are functionally silent but structurally intact. In focal ischemia, this flow range corresponds to a coronal region intercalated between the necrotic infarct core and the normal brain; it has been termed “penumbra” in analogy to the partly illuminated area around the complete shadow of the moon in full eclipse [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Opitz E, Schneider M. Über die Sauerstoffversorgung des Gehirns und den Mechanismus der Mangelwirkungen. Ergeb Physiol 1950;46:126–260.

    Google Scholar 

  2. Symon L, Branston NM, Strong AJ, Hope TD. The concepts of thresholds of ischaemia in relation to brain structure and function. Journal of Clinical Pathology 1977;30, Suppl.1: 149–54.

    Article  Google Scholar 

  3. Astrup J, Symon L, Siesjö BK. Thresholds in cerebral ischemia — The ischemic penumbra. Stroke 1981;12:723–25.

    Article  PubMed  CAS  Google Scholar 

  4. del Zoppo GJ. Why do all drugs work in animals but none in stroke patients? 1._Drugs promoting cerebral blood flow. J Intern Med 1995;237(1):79–88.

    Article  PubMed  Google Scholar 

  5. Kaplan B, Brint S, Tanabe J, Jacewicz M, Wang X-J, Pulsinelli W. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 1991;22:1032–39.

    Article  PubMed  CAS  Google Scholar 

  6. Lassen NA, Fieschi C, Lenzi GL. Ischemic penumbra and neuronal death: comments on the therapeutic window in acute stroke with particular reference to thrombolytic therapy. Cerebrovasc Dis 1991;1, Suppl.1:32–35.

    Article  Google Scholar 

  7. McCulloch J. Glutamate receptor antagonists in cerebral ischaemia. J Neural Transm 1994;43(Suppl.):71–79.

    CAS  Google Scholar 

  8. Marler JR, Brott T, Broderick J, Kothari R, M OD, Barsan W, et al. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581–87.

    Article  CAS  Google Scholar 

  9. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 1977;8:51–57.

    Article  PubMed  CAS  Google Scholar 

  10. Sharp FR, Lu AG, Tang Y, Millhorn DE. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 2000;20:1011–32.

    Article  PubMed  CAS  Google Scholar 

  11. Hoehn-Berlage M, Norris DG, Kohno K, Mies G, Leibfritz D, Hossmann K-A. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: The relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab 1995;15:1002–11.

    Article  PubMed  CAS  Google Scholar 

  12. Kinouchi H, Sharp FR, Koistinaho J, Hicks K, Kamii H, Chan PH. Induction of heat shock hsp70 messenger RNA and HSP70-kDa protein in neurons in the penumbra following focal cerebral ischemia in the rat. Brain Res 1993;619:334–38.

    Article  PubMed  CAS  Google Scholar 

  13. Hakim AM. The cerebral ischemic penumbra. Can J Neurol Sci 1987;14:557–59.

    PubMed  CAS  Google Scholar 

  14. Memezawa H, Smith M-L, Siesjö BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 1992;23:552–59.

    Article  PubMed  CAS  Google Scholar 

  15. Selman WR, Vander Veer C, Whittingham TS, La Manna JC, Lust WD, Ratcheson RA. Visually defined zones of focal ischemia in the rat brain KW: Metabolic penumbra. Neurosurgery 1987;21:825–30.

    Article  PubMed  CAS  Google Scholar 

  16. Degraba TJ, Ostrow PT, Grotta JC. Threshold of calcium disturbances after focal cerebral ischemia in rats — Implications of the window of the rapeutic opportunity. Stroke 1993;24:1212–17.

    Article  PubMed  CAS  Google Scholar 

  17. Hossmann K-A. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994;36:557–65.

    Article  PubMed  CAS  Google Scholar 

  18. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann K-A. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 1991;11:753–61.

    Article  PubMed  CAS  Google Scholar 

  19. Hossmann K-A, Mies G, Paschen W, Csiba L, Bodsch W, Rapin JR, et al. Multiparametric imaging of blood flow and metabolism after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 1985;5:97–107.

    Article  PubMed  CAS  Google Scholar 

  20. Heiss W-D, Podreka I. Role of PET and SPECT in the assessment of ischemic cerebrovascular disease. Cereb Brain Metab Rev 1993;5:235–63.

    CAS  Google Scholar 

  21. Paschen W, Mies G, Hossmann K-A. Threshold relationship between cerebral blood flow, glucose utilization, and energy metabolites during development of stroke in gerbils. Exp Neurol 1992;117:325–33.

    Article  PubMed  CAS  Google Scholar 

  22. Hossmann K-A, Schuier FJ. Experimental brain infarcts in cats. I. Pathophysiological observations. Stroke 1980;11:583–92.

    Article  PubMed  CAS  Google Scholar 

  23. Peek KE, Lockwood AH, Izumiyama M, Yap EWH, Labove J. Glucose metabolism and acidosis in the metabolic penumbra of rat brain. Metab Brain Dis 1989;4:261–72.

    Article  PubMed  CAS  Google Scholar 

  24. Jones T, Chesler DA, Ter-Pogossian MM. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 1976;49:339–43.

    Article  PubMed  CAS  Google Scholar 

  25. Kanno I, Uemura K, Higano S, Murakami M, Iida H, Miura S, et al. Oxygen extraction fraction at maximally vasodilated tissue in the ischemic brain estimated from the regional C02 responsiveness measured by positron emission tomography. J Cereb Blood Flow Metab 1988;8:227–35.

    Article  PubMed  CAS  Google Scholar 

  26. Back T, Kohno K, Hossmann K-A. Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression — Effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab 1994;14:12–19.

    Article  PubMed  CAS  Google Scholar 

  27. Kohno K, Hoehn-Berlage M, Mies G, Back T, Hossmann K-A. Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction. Magn Reson Imaging 1995;13:73–80.

    Article  PubMed  CAS  Google Scholar 

  28. Back T, Hoehn-Berlage M, Kohno K, Hossmann K-A. Diffusion nuclear magnetic resonance imaging in experimental stroke — Correlation with cerebral metabolites. Stroke 1994;25:494–500.

    Article  PubMed  CAS  Google Scholar 

  29. Kucharczyk J, Mintorovitch J, Asgari H, Tsuura M, Moseley M. In vivo diffusion-perfusion magnetic resonance imaging of acute cerebral ischemia. Can J Physiol Pharmacol 1991;69:1719–25.

    Article  PubMed  CAS  Google Scholar 

  30. Minematsu K, Fisher M, Li L, Sotak CH, Davis MA, Fiandaca MS. Diffusion weighted MRI rapidly detects rat focal brain abnormalities induced by suture occlusion of the MCA. Neurology 1991;41:1162–62.

    Google Scholar 

  31. Roberts TPL, Vexler Z, Derugin N, Moseley ME, Kucharczyk J. High-speed MR imaging of ischemic brain injury following stenosis of the middle cerebral artery. J Cereb Blood Flow Metab 1993;13:940–46.

    Article  PubMed  CAS  Google Scholar 

  32. Neumann-Haefelin T, Wittsack HJ, Wenserski F, Siebler M, Seitz RJ, Modder U, et al. Diffusion-and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 1999;30:1591–97.

    Article  PubMed  CAS  Google Scholar 

  33. Hata R, Maeda K, Hermann D, Mies G, Hossmann K-A. Dynamic s of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000;20:306–15.

    Article  PubMed  CAS  Google Scholar 

  34. Hossmann K-A. Periinfarct depolarizations. Cereb Brain Metab Rev 1996;8:195–208.

    CAS  Google Scholar 

  35. Nedergaard M, Astrup J. Infarct rim: effect of hyperglycemia on direct current potential and (14 C)-deoxyglucose phosphorylation. J Cereb Blood Flow Metab 1986;6:607–15.

    Article  PubMed  CAS  Google Scholar 

  36. Shinohara M, Dollinger B, Brown G, Rapoport S, Sokoloff L. Cerebral glucose utilizat ion: local changes during and after recovery from spreading cortical depression. Science 1979;203:188–90.

    Article  PubMed  CAS  Google Scholar 

  37. Kocher M. Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression. J Cereb Blood Flow Metab 1990;10:564–71.

    Article  PubMed  CAS  Google Scholar 

  38. Mies G, Paschen W. Regional changes of blood flow, glucose, and ATP content determined on brain sections during a single passage of spreading depression in rat brain cortex. Exp Neurol 1984;84:249–58.

    Article  PubMed  CAS  Google Scholar 

  39. Duckrow RB. Regional cerebral blood flow during spreading cortical depression in conscious rats. J Cereb Blood Flow Metab 1991;11:150–54.

    Article  PubMed  CAS  Google Scholar 

  40. Iijima T, Mies G, Hossmann K-A. Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801. Effect on volume of ischemic injury. J Cereb Blood Flow Metab 1992;12:727–33.

    Article  PubMed  CAS  Google Scholar 

  41. Gyngell ML, Back T, Hoehn-Berlage M, Kohno K, Hossmann K-A. Transient cell depolarization after permanent middle cerebral artery occlusion: an observation by diffusion-weighted MRI and localized 1H-MRS. Magn Reson Med 1994;31:337–41.

    Article  PubMed  CAS  Google Scholar 

  42. Takeda Y, Iacewicz M, Takeda Y, Nowak Jr. TS, Pulsinelli WA. DC-potential and energy metabolites in the focal ischemia. J Cereb Blood Flow Metab 1993;13:S450–S450.

    Google Scholar 

  43. Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 2000;301:173–87.

    Article  PubMed  CAS  Google Scholar 

  44. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999;79:1431–568.

    PubMed  CAS  Google Scholar 

  45. Hossmann K-A. Neuronal survival and revival during and after cerebral ischemia. Amer J Emerg Med 1983;1:191–97.

    Article  CAS  Google Scholar 

  46. Von Kummer R, Holle R, Rosin L, Forsting M, Hacke W. Does arterial recanalization improve outcome in carotid territory stroke? Stroke 1995;26:581–87.

    Article  Google Scholar 

  47. Kohno K, Mies G, Djuricic B, Hossmann K-A. NBQX reduces threshold of protein synthesis inhibition in focal ischaemia in rats. Neuroreport 1994;5:2342–44.

    Article  PubMed  CAS  Google Scholar 

  48. Mies G, Kohno K, Hossmann K-A. MK-801, a glutamate antagonist, lowers flow threshold for inhibition of protein synthesis after middle cerebral artery occlusion of rat. Neurosci Lett 1993;155:65–68.

    Article  PubMed  CAS  Google Scholar 

  49. Mies G, Kohno K, Hossmann K-A. Prevention of periinfarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J Cereb Blood Flow Metab 1994;14:802–07.

    Article  PubMed  CAS  Google Scholar 

  50. Strong AJ, Harland SP, Meldrum BS, Whittington DJ. Imaging the origins, propagation and frequence of transient depolarisations in focal cerebral ischemia. J Cereb Blood Flow Metab 1995;25, Suppl. 1:S14–S14.

    Google Scholar 

  51. Hossmann K-A. Glutamate-mediated injury in focal cerebral ischemia: The excitotoxin hypothesis revised. Brain Pathol 1994;4:23–36.

    Article  PubMed  CAS  Google Scholar 

  52. Heiss W-D, Thiel A, Grond M, Graf R. Which targets are relevant for therapy of acute ischemic stroke? Stroke 1999;30:1486–89.

    Article  PubMed  CAS  Google Scholar 

  53. Grotta JC. Acute stroke therapy at the millennium: consummating the marriage between laboratory and bedside.The Feinberg lecture. Stroke 1999;30:1722–28.

    Article  PubMed  CAS  Google Scholar 

  54. Devuyst G, Bogousslavsky J. Recent progress in drug treatment for acute stroke. Journal of Neurology, Neurosurgery and Psychiatry 1999;67:420–25.

    Article  CAS  Google Scholar 

  55. Pieper AA, Verma A, Zhang J, Snyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 1999;20:171–81.

    Article  PubMed  CAS  Google Scholar 

  56. Hata R, Mies G, Wiessner C, Hossmann K-A. Differential expression of c-fos and hsp72 mRNA in focal cerebral ischemia of mice. Neuroreport 1998;9:27–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Hossmann, KA. (2003). The Ischemic Penumbra: Pathophysiology and Therapeutic Implications. In: Cerebral Blood Flow. Update in Intensive Care Medicine, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56036-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56036-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42684-4

  • Online ISBN: 978-3-642-56036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics