Finite-Difference Simulations of Seismic Wavefields in Isotropic and Anisotropic Earth Models

  • Trond Ryberg
  • Georg Rümpker
  • Marc Tittgemeyer
  • Friedemann Wenzel
Conference paper


The analysis of the propagation of elastic waves (seismic phases) plays an essential role in studying the structure, composition and evolution of Earth’s interior. Elastic waves may be generated by earthquakes or artificial sources (explosives). Analysing the recorded wavefields yields information about the medium through which the waves have propagated. Information about the velocity structure within the Earth, provides important constraints on the mineralogical composition. In most cases, however, the direct derivation of a velocity model is not possible. The comparison of synthetic seismograms with observations can be used in the interpretation of the recorded seismic data and for the analysis of wave propagation effects. In this forward-modeling approach, an initial model of the velocity structure is modified until observed and calculated wavefields agree sufficiently well. We discuss applications of wavefield simulations in isotropic and anisotropic elastic media that have improved our knowledge about the elastic fine structure of Earth’s interior. Our modeling is based on finite-difference schemes to solve the elastic wave equation. Efficient implementations of the corresponding code with further examples of seismic wavefield modeling are also given in [11].


Wave Field Velocity Fluctuation Synthetic Seismogram Uppermost Mantle Shear Wave Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aki, K. E., and P. G. Richards, Quantitative Seismology-Theory and Methods, Freemann, San Francisco, 1980.Google Scholar
  2. 2.
    Alsina, D. and Snieder, R., Small-scale sublithospheric continental mantle deformation: constraints from SKS splitting observations, Geophys. J. Int., 123, 431–448, 1995.CrossRefGoogle Scholar
  3. 3.
    Babuska, V., and M. Cara, Seismic anisotropy in the Earth, Kluwer Academic Publishers, Dordrecht, 1991.CrossRefGoogle Scholar
  4. 4.
    Crampin, S, An introduction to wave propagation in anisotropic media, Geophys. J. R. astr. Soc., 76, 135–145, 1984.CrossRefGoogle Scholar
  5. 5.
    Kelly, K. R., Ward, R. W., Treitel, S., and Alford, R. M., Synthetic seismo-grams: a finite-difference approach, Geophysics, 41, 2–27, 1976.CrossRefGoogle Scholar
  6. 6.
    Kumazawa, M., and O. L. Anderson, Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite, J. Geophys. Res., 74, 5.961-5.972, 1969.Google Scholar
  7. 7.
    Mainprice, D., and P. G. Silver, Interpretation of SKS-waves using samples from the subcontinental lithosphère, Phys. Earth Planet. Inter., 78, 257–280, 1993.CrossRefGoogle Scholar
  8. 8.
    Rümpker, G. and Ryberg, T., New “Fresnel-zone” estimates for shear-wave splitting observations from finite-difference modeling, Geophys. Res. Lett., 27, 2005–2008, 2000.CrossRefGoogle Scholar
  9. 9.
    Ryberg, T. and Weber, M., Receiver function arrays-a reflection seismic approach, Geophys. J. Int., 141, 1–11, 2000.CrossRefGoogle Scholar
  10. 10.
    Ryberg, T., Tittgemeyer, M., and Wenzel, F., Finite difference modelling of P-wave scattering in the upper mantle, Geophys. J. Int., 141, 787–801, 2000.CrossRefGoogle Scholar
  11. 11.
    Ryberg, T., Tittgemeyer, M., and Wenzel, F., Finite difference modelling of elastic wave propagation in the Earth’s uppermost mantle, in High Performance Computing in Science and Engineering’99, edited by E. Krause and W. Jäger, pp. 3–12, Springer, Berlin Heidelberg New York, 2000.Google Scholar
  12. 12.
    Ryberg, T., Tittgemeyer, M., and Wenzel, F., Finite difference modelling of seismic wave phenomena within the Earth’s uppermost mantle, submitted to Transactions of the High Performance Computing Center Stuttgart (HLRS), 2000.Google Scholar
  13. 13.
    Tittgemeyer, M., Wenzel, F., Fuchs, K., and Ryberg, T., Wave propagation in a multiple-scattering upper mantle-observations and modelling, Geophys. J. Int., 127, 492–502, 1996.CrossRefGoogle Scholar
  14. 14.
    Tittgemeyer, M., Wenzel, F., Ryberg, T., Fuchs, K., Scales of heterogeneities in the continental crust and upper mantle. Pure Appl. Geophys., 156, 29–52, 1999.CrossRefGoogle Scholar
  15. 15.
    Wessel, P. and Smith, W., Free software helps map and display data, EOS Trans. Am. Geophys. Union, 72, 441, 445-446, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Trond Ryberg
    • 1
  • Georg Rümpker
    • 1
  • Marc Tittgemeyer
    • 2
  • Friedemann Wenzel
    • 3
  1. 1.GeoForschungsZentrumPotsdamGermany
  2. 2.Max-Planck Institute of Cognitive NeuroScienceLeipzigGermany
  3. 3.Geophysikalisches InstitutUniversität KarlsruheKarlsruheGermany

Personalised recommendations