Skip to main content

Abstract

Turbulent fluctuations exert a significant influence on chemical production rates. If finite-rate chemistry is employed the use of probability density functions (pdf) allows to account for turbulence chemistry interaction. In this paper an assumed pdf approach incorporates the effects of temperature and species fluctuations on chemical reaction rates. The pdf’s assumed are a clipped Gaussian distribution for temperture and a multivariate β-pdf for an arbitrary number of different species. Finite-rate chemistry is usually associated with large discrepancies in chemical time scales. Therefore implicit or at least point implicit numerical schemes are required for time integration. Thus the pdf-equations and pdf influenced source terms are discretized by backward Euler formulations. Results show that the high numerical stability of the employed LU-SGS algorithm is maintained. A detailed investigation of the performance of the scheme is given. This includes a comparison between NEC SX-4 and NEC SX-5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pope, S. B.: PDF Methods for Turbulent Reactive Flows. Prog. Energy Comb. Sci., 11, (1985) 119–192

    Article  MathSciNet  Google Scholar 

  2. Girimaji, S. S.: A Simple Recipe for Modeling Reaction-Rates in Flows with Turbulent Combustion. AIAA paper 91-1792 (1991)

    Google Scholar 

  3. Girimaji, S. S.: Assumed β-pdf Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing”, Comb. Sci. Techn., 78, (1991) 177–196

    Article  Google Scholar 

  4. Baurle, R. A., Alexopoulos, G. A., Hassan, H.A.: Modeling of Supersonic Combustion Using Assumed Probability Density Functions. J. Prop. Power 10 (1994) 777–786

    Article  Google Scholar 

  5. Möbus, H., Gerlinger, P., Brüggemann, D.: Comparison of Eularian anf Lagrangian Monte Carlo PDF Methods for Turbulent Diffusion Flames. Comb. Flame 124 (2001) 519–534

    Article  Google Scholar 

  6. Gerlinger, P., Stoll, P., Brüggemann, D.: An Implicit Multigrid Method for the Simulation of Chemically Reacting Flows. J. Comp. Phys. 146 (1998) 322–345

    Article  MATH  Google Scholar 

  7. Gerlinger, P., Möbus, H., Brüggemann, D.: An Implicit Multigrid Method for Turbulent Combustion. J. Comp. Phys. 167 (2001) 247–276

    Article  MATH  Google Scholar 

  8. Jachimowski, C. J.: An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion. NASA TP 2791, (1988)

    Google Scholar 

  9. Coakley, T. J., Huang, P. G.: Turbulence Modeling for High Speed Flows. AIAA paper 92-0436 (1992)

    Google Scholar 

  10. Gerlinger, P., Brüggemann, D.: An Implicit Multigrid Scheme for the Compressible Navier-Stokes Equations with Low-Reynolds-Number Turbulence Closure. J. Fluids Eng. 120 (1998) 257–262

    Article  Google Scholar 

  11. Jameson, A., Yoon, S.: Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations. AIAA J. 25 (1987) 929–937

    Article  Google Scholar 

  12. Shuen, J. S.: Upwind Differencing and LU Factorization for Chemical Non-Equilibrium Navier-Stokes Equations. J. Comp. Phys. 99 (1992) 233–250

    Article  MATH  Google Scholar 

  13. Gaffney, R. L. Jr, White, J. A., and Girimaji, S. S.: Modeling Turbulent Chemistry Interactions Using Assumed PDF Method. AIAA Paper 92-3638 (1992)

    Google Scholar 

  14. Cheng, T. S., Wehrmeyer, J. A., Pitz, R.w., Jarrett, O. Jr., and Northam, G. B.: Raman Measurements of Mixing Modeling and Finite-Rate Chemistry in a Supersonic Hydrogen Air Diffusion Flame. Comb. Flame 99 (1994) 157–173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerlinger, P., Aigner, M. (2002). Assumed PDF Modeling with Detailed Chemistry. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56034-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56034-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62719-4

  • Online ISBN: 978-3-642-56034-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics