Assumed PDF Modeling with Detailed Chemistry

  • Peter Gerlinger
  • Manfred Aigner
Conference paper


Turbulent fluctuations exert a significant influence on chemical production rates. If finite-rate chemistry is employed the use of probability density functions (pdf) allows to account for turbulence chemistry interaction. In this paper an assumed pdf approach incorporates the effects of temperature and species fluctuations on chemical reaction rates. The pdf’s assumed are a clipped Gaussian distribution for temperture and a multivariate β-pdf for an arbitrary number of different species. Finite-rate chemistry is usually associated with large discrepancies in chemical time scales. Therefore implicit or at least point implicit numerical schemes are required for time integration. Thus the pdf-equations and pdf influenced source terms are discretized by backward Euler formulations. Results show that the high numerical stability of the employed LU-SGS algorithm is maintained. A detailed investigation of the performance of the scheme is given. This includes a comparison between NEC SX-4 and NEC SX-5.


Diffusion Flame Vector Length Supersonic Combustion Average Production Rate Turbulence Chemistry Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pope, S. B.: PDF Methods for Turbulent Reactive Flows. Prog. Energy Comb. Sci., 11, (1985) 119–192MathSciNetCrossRefGoogle Scholar
  2. 2.
    Girimaji, S. S.: A Simple Recipe for Modeling Reaction-Rates in Flows with Turbulent Combustion. AIAA paper 91-1792 (1991)Google Scholar
  3. 3.
    Girimaji, S. S.: Assumed β-pdf Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing”, Comb. Sci. Techn., 78, (1991) 177–196CrossRefGoogle Scholar
  4. 4.
    Baurle, R. A., Alexopoulos, G. A., Hassan, H.A.: Modeling of Supersonic Combustion Using Assumed Probability Density Functions. J. Prop. Power 10 (1994) 777–786CrossRefGoogle Scholar
  5. 5.
    Möbus, H., Gerlinger, P., Brüggemann, D.: Comparison of Eularian anf Lagrangian Monte Carlo PDF Methods for Turbulent Diffusion Flames. Comb. Flame 124 (2001) 519–534CrossRefGoogle Scholar
  6. 6.
    Gerlinger, P., Stoll, P., Brüggemann, D.: An Implicit Multigrid Method for the Simulation of Chemically Reacting Flows. J. Comp. Phys. 146 (1998) 322–345MATHCrossRefGoogle Scholar
  7. 7.
    Gerlinger, P., Möbus, H., Brüggemann, D.: An Implicit Multigrid Method for Turbulent Combustion. J. Comp. Phys. 167 (2001) 247–276MATHCrossRefGoogle Scholar
  8. 8.
    Jachimowski, C. J.: An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion. NASA TP 2791, (1988)Google Scholar
  9. 9.
    Coakley, T. J., Huang, P. G.: Turbulence Modeling for High Speed Flows. AIAA paper 92-0436 (1992)Google Scholar
  10. 10.
    Gerlinger, P., Brüggemann, D.: An Implicit Multigrid Scheme for the Compressible Navier-Stokes Equations with Low-Reynolds-Number Turbulence Closure. J. Fluids Eng. 120 (1998) 257–262CrossRefGoogle Scholar
  11. 11.
    Jameson, A., Yoon, S.: Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations. AIAA J. 25 (1987) 929–937CrossRefGoogle Scholar
  12. 12.
    Shuen, J. S.: Upwind Differencing and LU Factorization for Chemical Non-Equilibrium Navier-Stokes Equations. J. Comp. Phys. 99 (1992) 233–250MATHCrossRefGoogle Scholar
  13. 13.
    Gaffney, R. L. Jr, White, J. A., and Girimaji, S. S.: Modeling Turbulent Chemistry Interactions Using Assumed PDF Method. AIAA Paper 92-3638 (1992)Google Scholar
  14. 14.
    Cheng, T. S., Wehrmeyer, J. A., Pitz, R.w., Jarrett, O. Jr., and Northam, G. B.: Raman Measurements of Mixing Modeling and Finite-Rate Chemistry in a Supersonic Hydrogen Air Diffusion Flame. Comb. Flame 99 (1994) 157–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Peter Gerlinger
    • 1
  • Manfred Aigner
    • 1
  1. 1.Institut für Verbrennungstechnik der Luft- und RaumfahrtUniversität StuttgartStuttgartGermany

Personalised recommendations