Skip to main content

Quantum Chemical Calculations of Transition Metal Complexes

  • Conference paper
High Performance Computing in Science and Engineering ’01
  • 379 Accesses

Abstract

Transition metal complexes show a wide variety of chemical reactions. To gain insight into the bonding situation of these complexes and the transition states involved in these reactions is not only crucial for understanding the underlying principles, but even more for finding new reaction pathways or optimising reaction conditions in chemical industry. Where experiments fail to obtain the needful results, modern quantum chemical approaches can be utilised to investigate chemical systems and predict their properties. This is a challenging task for computational chemists and the necessary calculations, particularly at high levels of theory, are demanding in computational resources. Our research focuses on quantum chemical calculations of transition metal compounds using ab initio methods and density functional theory. The goal of our investigations is the exact calculation of bond energies and activation barriers, which are very difficult to obtain experimentally. In the course of our investigation we found out that coupled cluster calculation at the CCSD(T) level in conjunction with quasirelativistic small-core effective core potentials and valence basis functions of DZ+P quality give very accurate results. We are studying now the strength of various transition metal ligand bonds and the reaction profiles of important transition metal compounds in order to make predictions for new experiments. Coupled cluster calculations are computationally extremely demanding and thus, the access to supercomputers is absolutely necessary for our research. Calculations of this quality make it possible for us to predict accurate data about chemical reactions and bond energies, which can be considered as true top research on a worldwide level. The following chapters give an overview about the research of our group using computational resources of the HLR Stuttgart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uhl, W.; Pohlmann, M.; wartchow, R., Angew. Chem. 1998, 110, 1007; Angew. Chem. Int. Ed. 1998, 37, 961.

    Article  Google Scholar 

  2. Dapprich S., Frenking G., J. Phys. Chem. 1995, 99, 9352.

    Article  Google Scholar 

  3. Reed A.E., Curtiss L.A., Weinhold F., Chem. Rev. 1988, 88, 899.

    Article  Google Scholar 

  4. Frenking G., Antes L, Böhme M., Dapprich S., Ehlers A.W., Jonas J., Neuhaus A., Otto M., Stegmann R., Veldkamp A., Vyboishchikow S.F., In: Lipkowitz K.B., Boyd D.B. (eds) Reviews in computational chemistry, 1996, Vol. 8, VCH, New York, pp 63–144.

    Chapter  Google Scholar 

  5. Werner H.-J., Knowles P.J., Universität Stuttgart and University of Birmingham.

    Google Scholar 

  6. Cotton F.A., Feng X., Organometallics 1998, 17, 128.

    Article  Google Scholar 

  7. Cowley, A.H.; Lomeli, V.; Voigt, A., J. Am. Chem. Soc. 1998, 120, 6401.

    Article  Google Scholar 

  8. Weiss, J.; Stetzkamp, D.; Nuber, B.; Fischer, R.A.; Boehme, C; Frenking, G., Angew. Chem. 1997, 109, 95; Angew. Chem. Int. Ed. 1997, 36, 70. 9. Jutzi, P.; Neumann, B.; Reumann, G.; Stammler, H.G., Org anometallics 1998, 17, 1305.

    Article  Google Scholar 

  9. Braunschweig, H.; Kollmann, C; Englert, U., Angew. Chem. Int. Ed. 1998, 37, 3179.

    Article  Google Scholar 

  10. Uhl, W.; Benter, M.; Melle, S.; Saak, W.; Frenking, G.; Uddin, J., Organometallics 1999, 18. 3778.

    Article  Google Scholar 

  11. Vyboishchikov, S.F.; Frenking, G., Chem. Eur. J. 1998, 4, 1439.

    Article  Google Scholar 

  12. Su, J.; Li, X.-W.; Crittendon, R.C.; Campana, CF.; Robinson, G.H., Organometallics 1997, 16, 4511.

    Article  Google Scholar 

  13. (a) Ehlers, A.W.; Baerends, E.J.; Bickelhaupt, F.M.; Radius, U., Chem. Eur. J. 1989, 4, 210. (b) Radius, U.; Bickelhaupt, F.M.; Ehlers, A.W.; Goldberg, N.; Hoffmann, R., Inorg. Chem. 1998, 37, 1080. (c) Bickelhaupt, F.M.; Radius, U.; Ehlers, A.W.; Hoffmann, R.; Baerends, E.J., New J. Chem. 1998,1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frunzke, J., Frenking, G. (2002). Quantum Chemical Calculations of Transition Metal Complexes. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56034-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56034-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62719-4

  • Online ISBN: 978-3-642-56034-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics