Hydrophobic Solvation in Liquid Water Via Car-Parrinello Molecular Dynamics: Progress and First Results

  • Barbara Kirchner
  • Dominik Marx
Conference paper


Solvation of apolar substances in liquid water plays a crucial role in “wet chemistry” as well as in biochemistry due to the relation to hydrophobicity effects. However, knowledge of the microscopic details of structure and dynamics at such solute-water “interfaces” is rather limited. The object of this study is a single hydrogen radical in water at ambient conditions. This system was chosen, because it is known experimentally that the diffusion of H in water is much faster than the self-diffusion of water itself and only marginally slower than the fast Grotthuss diffusion of H+ in water. This paradox awaits an explanation, in particular since pioneering classical molecular dynamics simulations predict a clathrate-like cage and do not confirm fast diffusion, probably because of insufficiently accurate model potentials. This limitation can be circumvented by using Car—Parrinello molecular dynamics, where the interactions are derived from density functional electronic structure calculations.


Water Molecule Liquid Water Electron Localization Function Hydrogen Radical Hydrophobic Solvation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Roduner, P. L. W. Tregenna-Piggott, H. Dilger, K. Ehrensberger, and M. Senba: Effect of Mass on Particle Diffusion in Liquids studied by Electron Spin Exchange and Chemical Reaction of Muonium with Oxygen in Aqueous Solution. J. Chem. Soc. Faraday Trans. 91 (1995) 1935–1940CrossRefGoogle Scholar
  2. 2.
    D. Marx, M. Sprik, and M. Parrinello: Ab initio molecular dynamics of ion solvation. The case of Be2+ in water. Chem. Phys. Lett. 273 (1997) 360–366CrossRefGoogle Scholar
  3. 3.
    J. Hutter and D. Marx: Ab Initio Molecular Dynamics: Theory and Implementation. In J. Grotendorst, editor, Modern Methods and Algorithms of Quantum Chemistry. John von Neumann Institute for Computing. Jülich (2000) 301–450Google Scholar
  4. 4.
    A. Curioni, M. Sprik, W. Andreoni, H. Schiffer, J. Hutter, and M. Parrinello: Density Functional theory-based molecular dynamics simulation of acidcatalyzed chemical reaction in liquid trioxane. J. Am. Chem. Soc. 119 (1997) 7218–7229CrossRefGoogle Scholar
  5. 5.
    K. Doclo and U. Röthlisberger: Ab intio molecular dynamics simulation of the gas-phase reaction of hydroxy 1 radical with nitrogen dioxide radical. Chem. Phys. Lett. 297 (1998) 205–210CrossRefGoogle Scholar
  6. 6.
    E. J. Meijer and M. Sprik: Ab inito molecular dynamics study of the reaction of water with formaldehyde in sulfuric acid solution. J. Am. Chem. Soc. 120 (1998) 6345–6355CrossRefGoogle Scholar
  7. 7.
    U. Röthlisberger, M. Sprik, and M. L. Klein: Living polymers. Ab initio molecular dynamics study of the initiation step in the polymerization of isoprene induced by ethyl lithium. J. Chem. Soc. Faraday Trans. 94 (1998) 501–508CrossRefGoogle Scholar
  8. 8.
    M. Mohr, D. Marx, M. Parrinello and H. Zipse: Solvation of Radical Cations in Water-Reactive or Unreactive Solvation? Chem. Eur. J. 6 (2000) 4009–4015CrossRefGoogle Scholar
  9. 9.
    W. Blokzijl and J. B. F. N. Engberts. Hydrophobic Effects. Opinions and Facts. Angew. Chem. Int. Ed. Engl. 32 (1993) 1545–1579CrossRefGoogle Scholar
  10. 10.
    J. S. Tse and M. L. Klein: Are hydrogen atoms solvated by water molecules? J. Phys. Chem. 87 (1983) 5055–5057CrossRefGoogle Scholar
  11. 11.
    B. De Raedt, M. Sprik, and M. L. Klein: Computer simulation of muonium in water. J. Chem. Phys. 80 (1984) 5719–5724CrossRefGoogle Scholar
  12. 12.
    H. D. Gai and B. C. Garrett: Path integral calculations of the free energies of hydration of hydrogen isotopes (H, D, and Mu). J. Chem. Phys. 98 (1994) 9642–9648CrossRefGoogle Scholar
  13. 13.
    E. Roduner, P. W. Percival, P. Han, and D. M. Bartels: Isotope and temperature effects on the hyperfine interaction of atomic hydrogen in liquid water and in ice. J. Chem. Phys. 102 (1995) 5989–5997CrossRefGoogle Scholar
  14. 14.
    M. Holz, R. Haselmeier, R. K. Mazitov, and H. Weingärtner: Self-Diffusion of Neon in Water by 21Ne NMR. J. Am. Chem. Soc. 116 (1994) 801–802CrossRefGoogle Scholar
  15. 15.
    E. H. Hardy, A. Zygar, M. D. Zeidler, M. Holz and F. D. Sacher: Isotope effect on the translational and rotational motion in liquid water and ammonia J. Chem. Phys. 114 (2001) 3174–3181CrossRefGoogle Scholar
  16. 16.
    S. Nosé: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81 (1984) 511–519CrossRefGoogle Scholar
  17. 17.
    S. Nosé: A molecular-dynamics method for simulations in the canonical ensem-ble. Mol. Phys. 52 (1984) 255–268CrossRefGoogle Scholar
  18. 18.
    W. G. Hoover. Canonical dynamics-equilibrium phase-space distribution. Phys. Rev. A 31 (1985) 1695–1697CrossRefGoogle Scholar
  19. 19.
    A. D. Becke and K. E. Edgecombe: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92 (1990) 5397–5403CrossRefGoogle Scholar
  20. 20.
    M. Kohout and A. Savin: Atomic shell structure and electron numbers. Int. J. Quant. Chem. 60 (1996) 876–882CrossRefGoogle Scholar
  21. 21.
    P. L. Silvestrelli and M. Parrinello: Structural, electronic, and bonding properties of liquid water from first principles. J. Chem. Phys. 111 (1999) 3572–3580CrossRefGoogle Scholar
  22. 22.
    M. Sprik, J. Hutter, and M. Parrinello: Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient-corrected density functionals. J. Chem. Phys. 105 (1996) 1142–1152CrossRefGoogle Scholar
  23. 23.
    J. Z. Larese and Q. M. Zhang: Layer-by-layer melting of argon films on graphite-a neutron-diffraction study. Phys. Rev. Lett. 64 (1990) 922–925CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Barbara Kirchner
    • 1
  • Dominik Marx
    • 1
  1. 1.Ruhr-UniversitätBochumGermany

Personalised recommendations