Pathogenicity Islands and PAI-Like Structures in Pseudomonas Species

  • K. Larbig
  • C. Kiewitz
  • B. Tümmler
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 264/2)

Abstract

The pseudomonads are a class of organisms which are ubiquitously distributed at low frequency in soil and aquatic habitats (OECD 1997). Some species (Pseudomonas putida, Pseudomonas fluorescens) are in addition profound colonizers of the rhizo- and phyllosphere and promote plant growth, whereas the phylogenetically related species Pseudomonas syringae belongs to the major bacterial phytopatho-gens. The type species Pseudomonas aeruginosa is an opportunistic pathogen for plants, animals and man (Campa et al. 1993).

Keywords

Recombination Biodegradation Sewage Pseudomonas Gall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10:241–251CrossRefGoogle Scholar
  2. Alfano JR, Collmer A (1997) The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol 179:5655–5662PubMedGoogle Scholar
  3. Alfano JR, Charkowski AO, Deng W-L, Badel JL, Petnicki-Ocwieja T, van Dijk K, Collmer A (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA 97:4856–4861Google Scholar
  4. Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292PubMedGoogle Scholar
  5. Campa M, Bendinelli M, Friedman H (1993) Pseudomonas aeruginosa as an opportunistic pathogen. Plenum, New YorkCrossRefGoogle Scholar
  6. Coburn J, Frank DW (1999) Macrophages and epithelial cells respond differently to the Pseudomonas aeruginosa type III secretion system. Infect Immun 67:3151–3154PubMedGoogle Scholar
  7. Collmer A, Badel JL, Charkowski AO, Deng W-L, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Schneewind O, van Dijk K, Alfano JR (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci USA 97:8770–8777PubMedCrossRefGoogle Scholar
  8. Dacheux D, Toussaint B, Richard M, Brocier G, Croize J, Attree I (2000) Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect Immun 68:2916–2924PubMedCrossRefGoogle Scholar
  9. Dorn E, Hellwig M, Reineke W, Knackmuss H (1974) Isolation and characterization of a 3-chloro-benzoate degrading pseudomonad. Arch Microbiol 99:61–70PubMedCrossRefGoogle Scholar
  10. Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SMJ, Wu C, Mende-Mueller L, Frank DW (1997) ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25:547–557PubMedCrossRefGoogle Scholar
  11. Frank DW (1997) The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol 26:621–629PubMedCrossRefGoogle Scholar
  12. Fyfe JAM, Harris G, Govan JRW (1984) Revised pyocin typing method for Pseudomonas aeruginosa. J Clin Microbiol 20:47–50PubMedGoogle Scholar
  13. Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328PubMedCrossRefGoogle Scholar
  14. Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097PubMedCrossRefGoogle Scholar
  15. Hauser AR, Engel JN (1999) Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67:5530–5537PubMedGoogle Scholar
  16. Hancock REW, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB (1983) Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42:170–177PubMedGoogle Scholar
  17. He SY (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 36:363–392PubMedCrossRefGoogle Scholar
  18. Heuer T, Bürger C, Maaß G, Tümmler B (1998) Cloning of prokaryotic genomes in yeast artificial chromosomes: application to the population genetics of Pseudomonas aeruginosa. Electrophoresis 19:486–494PubMedCrossRefGoogle Scholar
  19. Kiewitz C, Tümmler B (2000) Sequence diversity of Pseudomonas aeruginosa: impact on population structure and genome evolution. J Bacteriol 182:3125–3135PubMedCrossRefGoogle Scholar
  20. Kiewitz C, Larbig K, Klockgether J, Weinel C, Tümmler B (2000) Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106-kb plasmid at two tRNALys gene loci in sequential Pseudomonas aeruginosa airway isolates. Microbiology 146:2365–2373PubMedGoogle Scholar
  21. Kitten T, Kinscherf TG, McEvoy JL, Willis DK (1998) A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Microbiol 28:917–929PubMedCrossRefGoogle Scholar
  22. Merlin C, Springael D, Toussaint A (1999) Tn4371: a modular structure encoding a phage-like integrase, a Pseudomonas-like catabolic pathway, and RP4-like transfer functions. Plasmid 41:40–54PubMedCrossRefGoogle Scholar
  23. Nishi A, Tominaga K, Furukawa K (2000) A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J Bacteriol 182:1949–1955PubMedCrossRefGoogle Scholar
  24. OECD (1997) Consensus document on information used in the assessment of environmental applications involving Pseudomonas. Series on Harmonization of Regulatory Oversight in Biotechnology, no. 6. OECD, ParisGoogle Scholar
  25. Pederson KJ, Vallis AJ, Aktories K, Frank DW, Barbieri JT (1999) The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32:393–01PubMedCrossRefGoogle Scholar
  26. Penaloza-Vazquez A, Preston GM, Collmer A, Bender CL (2000) Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000. Microbiology 146:2447–2456PubMedGoogle Scholar
  27. Ravatn R, Studer S, Springael D, Zehnder AJ, van der Meer JR (1998a) Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida Fl of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. Strain B13. J Bacteriol 180:4360–4369PubMedGoogle Scholar
  28. Ravatn R, Studer S, Zehnder AJ, van der Meer JR (1998b) Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J Bacteriol 180:5505–5514PubMedGoogle Scholar
  29. Rich JJ, Kinscherf TG, Kitten T, Willis DK (1994) Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol 176:7468–7475PubMedGoogle Scholar
  30. Römling U, Wingender J, Müller H, Tümmler B (1994) A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60:1734–1738PubMedGoogle Scholar
  31. Römling U, Greipel J, Tümmler B (1995) Gradient of genomic diveristy in the Pseudomonas aeruginosa chromosome. Mol Microbiol 17:323–332PubMedCrossRefGoogle Scholar
  32. Römling U, Schmidt KD, Tümmler B (1997) Large genome rearrangements discovered by the detailed analyis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 271:386–404PubMedCrossRefGoogle Scholar
  33. Schmidt KD, Tümmler B, Römling U (1996) Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J Bacteriol 178:85–93PubMedGoogle Scholar
  34. Scott JR (1992) Sex and the single circle: conjugative transposon. J Bacteriol 174:6005–6010PubMedGoogle Scholar
  35. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK-S, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • K. Larbig
  • C. Kiewitz
  • B. Tümmler

There are no affiliations available

Personalised recommendations