Skip to main content

Notch Signaling in the Brain: More than Just a Developmental Story

  • Conference paper
Notch from Neurodevelopment to Neurodegeneration: Keeping the Fate

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Abstract

Can molecular mechanisms involved in neural development help us to understand, prevent and perhaps reverse the course of brain aging and neurodegenerative disorders? Brain development and function require complex cellular and molecular processes controlled by a number of different signaling mechanisms. One such signaling mechanism, the Notch pathway, has been recognized as an important player in the regulation of cell-fate decisions during early neural development. However, the action of this evolutionarily conserved and widely used cell-cell interaction mechanism is not confined to the developing nervous system. Recent evidence obtained from works in a variety of species indicates that the Notch signal affects cell fate acquisition throughout life by regulating the ability of neural cells to respond to the various proliferation, differentiation, or apoptotic cues. In addition, recent studies have shown that elucidating the mechanism of Notch signaling and its role in the brain is important for our understanding of adult-onset neurological disorders, such as the presenilinlinked form of Alzheimer’s disease (AD) and cerebral arteriopathy CADASIL. Here we present an overview of Notch signaling and its role in the nervous system of vertebrates during their life span, from the very first stages of neurogenesis and neuronal differentiation during development to the maintenance of cellular phenotype in the mature and diseased brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654.

    PubMed  CAS  Google Scholar 

  • Ahmad I, Zagouras P, Artavanis-Tsakonas S (1995) Involvement of Notch-1 in mammalian retinal neurogenesis: association of Notch-1 activity with both immature and terminally differentiated cells. Mech Dev 53:73–85.

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nature Rev Neurosci 2:287–293.

    CAS  Google Scholar 

  • Apidianakis Y, Nagel AC, Chalkiadaki A, Preiss A, Delidakis, C (1999) Overexpression of the m4 and mα genes of the E(sp)-complex antagonizes Notch mediated lateral inhibition. Mech Dev 86:39–50.

    PubMed  CAS  Google Scholar 

  • Appel B, Eisen JS (1998) Regulation of neuronal specification in the zebrafish spinal cord by Delta function. Development 125:371–380.

    PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand M, Lake RJ (1999) Notch signaling: Cell fate control and signal integration in development. Science 284:770–776.

    PubMed  CAS  Google Scholar 

  • Aster JC, Robertson ES, Hasserjian RP, Turner JR, Kieff E, Sklar J (1997) Oncogenic forms of NOTCH 1 lacking either the primary binding site for RBP-Jkappa or nuclear localization sequences retain the ability to associate with RBP-Jkappa and activate transcription. J Biol Chem 272:11336–11343.

    PubMed  CAS  Google Scholar 

  • Austin CP, Feldman DE, Ida JA, Jr, Cepko CL (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121:3637–3650.

    PubMed  CAS  Google Scholar 

  • Bae S, Bessho Y, Hojo M, Kageyama R (2000) The bHLH gene Hes6, an inhibitor of Hesl, promotes neuronal differentiation. Development 127:2933–2943.

    PubMed  CAS  Google Scholar 

  • Bartlett PF, Brooker GJ, Faux CH, Dutton R, Murphy M, Turnley A, Kilpatrick TJ (1998) Regulation of neural stem cell differentiation in the forebrain. Immunol Cell Biol 76:414–418.

    PubMed  CAS  Google Scholar 

  • Beatus P, Lundkvist J, Oberg C, Lendahl U (1999) The Notch 3 intracellular domain represses Notch 1-mediated activation through Hairy/Enhancer of split (HES) promoters. Development 126:3925–3935.

    PubMed  CAS  Google Scholar 

  • Berechid BE, Thinakaran G, Wong PC, Sisodia SS, Nye JS (1999) Lack of requirement for presenilinl in Notchl signaling. Curr Biol 9:1493–1496.

    PubMed  CAS  Google Scholar 

  • Berezovska O, Xia, MQ, Hyman BT (1998) Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropathol Exp Neurol 57:738–745.

    PubMed  CAS  Google Scholar 

  • Berezovska O, Frost M, McAllen P, Knowles R, Koo E, Kang D, Shen J, Lu FM, Lux SE, Tonegawa S, Hyman BT (1999a) The Alzheimer-related gene presenilin 1 facilitates Notch 1 in primary mammalian neurons. Brain Res Mol Brain Res 69:273–280.

    PubMed  CAS  Google Scholar 

  • Berezovska O, Mclean P, Knowles R, Frosh M, Lu FM, Lu SE, Hyman BT (1999b) Notchl inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93:433–439.

    PubMed  CAS  Google Scholar 

  • Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90:281–291.

    PubMed  CAS  Google Scholar 

  • Bray S (1998) Notch signalling in Drosophila: three ways to use a pathway. Semin Cell Dev Biol 99:591–607.

    Google Scholar 

  • Brou C, Logeat F, Gupta N, Bessia C, LeBail 0, Doedens JR, Cumano A, Roux P, Black RA, Israel A (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrinmetalloprotease TACE. Mol Cell 5:207–216.

    PubMed  CAS  Google Scholar 

  • Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391–398.

    PubMed  CAS  Google Scholar 

  • Bush G, diSibio G, Miyamoto A, Denault JB, Leduc R, Weinmaster G (2001) Ligand-induced signaling in the absence of furin processing of Notchl. Dev Biol 229:494–502.

    PubMed  CAS  Google Scholar 

  • Casarosa S, Fode C, Guillemot F (1999) Mash 1 regulates neurogenesis in the ventral telencephalon. Development 126:525–534.

    PubMed  CAS  Google Scholar 

  • Castella P, Wagner JA, Caudy M (1999) Regulation of hippocampal neuronal differentiation by the basic helix-loop-helix transcription factors HES-1 and MASH-1. J Neurosci Res 56:229–240.

    PubMed  CAS  Google Scholar 

  • Chambers CB, Peng Y, Nguyen H, Gaiano N, Fishell G, Nye JS (2001) Spatiotemporal selectivity of response to Notchl signals in mammalian forebrain precursors. Development 128:689–702.

    PubMed  CAS  Google Scholar 

  • Chen Y, Fischer WH, Gill GN (1997) Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem 272:14110–14114.

    PubMed  CAS  Google Scholar 

  • Chitnis AB (1999) Control of neurogenesis — lessons from frogs, fish and flies. Curr Opin Neurobiol 9:18–25.

    PubMed  CAS  Google Scholar 

  • Cho K-O, Choi K-W (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396:272–275.

    PubMed  CAS  Google Scholar 

  • Coffman CR, Skoglund P, Harris WA, Kintner CR (1993) Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73:659–671.

    PubMed  CAS  Google Scholar 

  • Craig AM, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17:267–310.

    PubMed  CAS  Google Scholar 

  • De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R (1999) A presenilin-1 dependent gamma-secretaselike protease mediates release of Notch intracellular domain. Nature 398:518–522.

    PubMed  Google Scholar 

  • Donoviel DB, Hadjantonakis AK, Ikeda M, Zheng H, Hyslop PS, Bernstein A (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev 13:2801–2810.

    PubMed  CAS  Google Scholar 

  • Dorsky RI, Chang WS, Rapaport DH, Harris WA (1997) Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature 385:67–70.

    PubMed  CAS  Google Scholar 

  • Dunn GA (1971) Mutual contact inhibition of extension of chick sensory nerve fibres in vitro. J Comp Neurol 143:491–508.

    PubMed  CAS  Google Scholar 

  • Flores GV, Duan H, Yan H, Nagaraj R, Fu W, Zou Y, Noll M, Banerjee U (2000) Combinatorial signaling in the specification of unique cell fates. Cell 103:75–85.

    PubMed  CAS  Google Scholar 

  • Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M, Goridis C, Guillemot F (1998) The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20:483–494.

    PubMed  CAS  Google Scholar 

  • Fortini ME, Artavanis-Tsakonas S (1994) The Suppressor of Hairless protein participates in Notch receptor signaling. Cell 79:273–282.

    PubMed  CAS  Google Scholar 

  • Franklin JL, Berechid BE, Cutting FB, Presente A, Chambers CB, Foltz DR, Ferreira A, Nye JS (1999) Autonomous and non-autonomous regulation of mammalian neurite development by Notchl and Deltal. Curr Biol 9:1448–1457.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL (2000) rax, Hesl, and Notchl promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26:383–394.

    PubMed  CAS  Google Scholar 

  • Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notchl signaling in the murine forebrain. Neuron 26:395–404.

    PubMed  CAS  Google Scholar 

  • Geddes JW, Cotman CW (1991) Plasticity in Alzheimer’s disease: too much or not enough? Neurobiol Aging 12:330–333.

    PubMed  CAS  Google Scholar 

  • Georgakopoulos A, Marambaud P, Efthimiopoulos S, Shioi J, Cui W, Li HC, Schutte M, Gordon R, Holstein GR, Martinelli G, Mehta P, Friedrich VL Jr, Robakis NK (1999) Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts. Mol Cell 4:893–902.

    PubMed  CAS  Google Scholar 

  • Giniger E (1998) A role for Abl in Notch signaling. Neuron 20:667–681.

    PubMed  CAS  Google Scholar 

  • Greenwald I (1998) LIN-12/Notch signaling: lessons from worms and flies. Genes Dev 12:1751–1762.

    PubMed  CAS  Google Scholar 

  • Gridley T (2001) Notch signaling during vascular development. Proc Natl Acad Sci USA 98:5377–5378.

    PubMed  CAS  Google Scholar 

  • Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17:27–41.

    PubMed  Google Scholar 

  • Guo Y, Livne-Bar I, Zhou L, Boulianne GL (1999) Drosophila presenilin is required for neuronal differentiation and affects Notch subcellular localization and signaling. J Neurosci 19:8435–8442.

    PubMed  CAS  Google Scholar 

  • Haddon C, Smithers L, Schneider-Maunoury S, Coche T, Henrique D, Lewis J (1998) Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis. Development 125:359–370.

    PubMed  CAS  Google Scholar 

  • Handler M, Yang X, Shen J (2000) Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 127:2593–2606.

    PubMed  CAS  Google Scholar 

  • Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I (1999) Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 147:105–120.

    PubMed  CAS  Google Scholar 

  • Hartmann D, De Strooper B, Saftig P (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr Biol 9:719–727.

    PubMed  CAS  Google Scholar 

  • Hassan BA, Bermingham NA, He Y, Sun Y, Jan YN, Zoghbi HY, Bellen HJ (2000) atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain. Neuron 25:549–561.

    PubMed  CAS  Google Scholar 

  • Henrique D, Adam J, Myat A, Chitnis A, Lewis J, Ish-Horowitcz D (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375:787–790.

    PubMed  CAS  Google Scholar 

  • Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, Umans L, Schrijvers V, Checler F, Vanderstichele H, Baekelandt V, Dressel R, Cupers P, Huylebroeck D, Zwijsen A, Van Leuven F, De Strooper B (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA 96:11872–11877.

    PubMed  CAS  Google Scholar 

  • Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biol 2:461–462.

    PubMed  CAS  Google Scholar 

  • Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127:2515–2522.

    PubMed  CAS  Google Scholar 

  • Irvine KD (1999) Fringe, Notch, and making developmental boundaries. Curr Opin Genet Dev 9:434–441.

    PubMed  CAS  Google Scholar 

  • Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO 13:1799–1805.

    CAS  Google Scholar 

  • Jack C, Berezovska O, Wolfe MS, Hyman BT (2001) Effect of PS1 deficiency and an APP gamma-secretase inhibitor on Notchl signaling in primary mammalian neurons. Brain Res Mol Brain Res 87:166–174.

    PubMed  CAS  Google Scholar 

  • Jacobsen TL, Brennan K, Arias AM, Muskavitch MA (1998) Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development 125:4531–4540.

    PubMed  CAS  Google Scholar 

  • Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Maréchal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710.

    PubMed  CAS  Google Scholar 

  • Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, Piga N, Chapon F, Godfrain C, Tournier-Lasserve E (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105:597–605.

    PubMed  CAS  Google Scholar 

  • Kang DE, Soriano S, Frosch MP, Collins T, Naruse S, Sisodia SS, Leibowitz G, Levine F, Koo EH (1999) Presenilin 1 facilitates the constitutive turnover of beta-catenin: differential activity of Alzheimer’s disease-linked PSI mutants in the β-catenin-signaling pathway. J Neurosci 19:4229–4237.

    PubMed  CAS  Google Scholar 

  • Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, Hrabe de Angelis M (2001) The Notch ligand Jaggedl is required for inner ear sensory development. Proc Natl Acad Sci USA 98:3873–3878.

    PubMed  CAS  Google Scholar 

  • Kimble J, Simpson P (1997) The LIN-12/Notch signaling pathway and its regulation. Ann Rev Cell DevBiol 13:333–361.

    CAS  Google Scholar 

  • Koenderink MJ, Uylings HB (1995) Postnatal maturation of layer V pyramidal neurons in the human prefrontal cortex. A quantitative Golgi analysis. Brain Res 678:233–243.

    PubMed  Google Scholar 

  • Koop KE, MacDonald LM, Lobe CG (1996) Transcripts of Grg4, a murine groucho-related gene, are detected in adjacent tissues to other murine neurogenic gene homologues during embryonic development. Mech Dev 59:73–87.

    PubMed  CAS  Google Scholar 

  • Koyano-Nakagawa N, Wettstein D, Kintner C (1999) Activation of Xenopus genes required for lateral inhibition and neuronal differentiation during primary neurogenesis. Mol Cell Neurosci 14:327–339.

    PubMed  CAS  Google Scholar 

  • Kulic L, Walter J, Multhaup G, Teplow DB, Baumeister R, Romig H, Capell A, Steiner H, Haass C (2000) Separation of presenilin function in amyloid beta-peptide generation and endoproteolysis of Notch. Proc Natl Acad Sci USA 97:5913–5918.

    PubMed  CAS  Google Scholar 

  • Kumar JP, Moses K (2001) EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell 104:687–697.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nature Genet 21: 289–292.

    PubMed  CAS  Google Scholar 

  • Lauring SA, Overbaugh J (2000) Evidence that an IRES within the Notch2 coding region can direct expression of a nuclear form of the protein. Mol Cell 6:939–945.

    PubMed  CAS  Google Scholar 

  • Levitan D, Greenwald I (1998) Effects of SEL-12 presenilin on LIN-12 localization and function in Caenorhabditis elegans. Development 125:3599–3606.

    PubMed  CAS  Google Scholar 

  • Li X, Greenwald I(1997) HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc Natl Acad Sci USA 94:12204–12209.

    PubMed  CAS  Google Scholar 

  • Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G (1996) Expression patterns of Jagged, Delta 1, Notchl, Notch2 and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci 8:14–27.

    PubMed  CAS  Google Scholar 

  • Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52.

    PubMed  CAS  Google Scholar 

  • Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ (1998) neurogeninl is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482.

    PubMed  CAS  Google Scholar 

  • Martys-Zage JL, Kim SH, Berechid B, Bingham SJ, Chu S, Sklar J, Nye J, Sisodia SS (2000) Requirement for presenilin 1 in facilitating Jagged 2-mediated endoproteolysis and signaling of Notch 1. J Mol Neurosci 15:189–204.

    PubMed  CAS  Google Scholar 

  • Maynard TM, Wakamatsu Y, Weston JA (2000) Cell interactions within nascent neural crest cell populations transiently promote death of neurogenic precursors. Development 127:4561–4572.

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529.

    PubMed  CAS  Google Scholar 

  • Morrison A, Hodgetts C, Gossler A, Hrabe de Angelis M, Lewis J (1999) Expression of Deltal and Serratel (Jaggedl) in the mouse inner ear. Mech Dev 84:169–172.

    PubMed  CAS  Google Scholar 

  • Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510.

    PubMed  CAS  Google Scholar 

  • Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 2000 228:151–165.

    CAS  Google Scholar 

  • Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch 1. Mol Cell 5: 197–206.

    PubMed  CAS  Google Scholar 

  • Myat A, Henrique D, Ish-Horowicz D, Lewis J (1996) A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogenesis. Dev Biol 174:233–247.

    PubMed  CAS  Google Scholar 

  • Nakajima M, Shimizu T, Shirasawa T (2000) Notch-1 activation by familial Alzheimer’s disease (FAD)-linked mutant forms of presenilin-1. J Neurosci Res 62:311–317.

    PubMed  CAS  Google Scholar 

  • Nye JS, Kopan R, Axel R (1994) An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development 120:2421–2430.

    PubMed  CAS  Google Scholar 

  • Ohnuma S, Philpott A, Wang K, Holt CE, Harris WA (1999) p27Xicl, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99:499–510.

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hesl and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J 18:2198–2207.

    Google Scholar 

  • Olson EC, Schinder AF, Dantzker JL, Marcus EA, Spitzer NC, Harris WA (1998) Properties of ectopic neurons induced by Xenopus neurogeninl misexpression. Mol Cell Neurosci 12:281–299.

    PubMed  CAS  Google Scholar 

  • Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S, Kadesch T (1998) Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 18:2230–2239.

    PubMed  CAS  Google Scholar 

  • Pigino G, Pelsman A, Mori H, Busciglio J (2001) Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J Neurosci 21:834–842.

    PubMed  CAS  Google Scholar 

  • Parnavelas JG, Uylings HB (1980) The growth of non-pyramidal neurons in the visual cortex of the rat: a morphometric study. Brain Res 193:373–382.

    PubMed  CAS  Google Scholar 

  • Powell PA, Wesley C, Spencer S, Cagan RL (2001) Scabrous complexes with Notch to mediate boundary formation. Nature 409:626–630.

    PubMed  CAS  Google Scholar 

  • Qi H, Rand M, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S (1999) Processing of the Notch ligand Delta by the metalloprotease Kuzbanian. Science 283:91–94.

    PubMed  CAS  Google Scholar 

  • Ray WJ, Yao M, Mumm J, Schroeter EH, Saftig P, Wolfe M, Selkoe DJ, Kopan R, Goate AM (1999) Cell surface Presenilin-1 participates in the gamma-secretase-like proteolysis of Notch. J Bio Chem 274:36801–36807.

    CAS  Google Scholar 

  • Redmond L, Oh S-R, Hicks C, Weinmaster G, Ghosh A (2000) Nuclear Notch 1 signaling and the regulation of dendritic development. Nature Neurosci 3:30–40.

    PubMed  CAS  Google Scholar 

  • Ribaut-Barassin C, Moussaoui S, Brugg B, Haeberle AM, Huber G, Imperato A, Delhaye-Bouchaud N, Mariani J, Bailly YJ (2000) Hemisynaptic distribution patterns of presenilins and beta-APP isoforms in the rodent cerebellum and hippocampus. Synapse 35:96–110.

    PubMed  CAS  Google Scholar 

  • Scheer N, Groth A, Hans S, Campos-Ortega JA (2001) An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128:1099–1107.

    PubMed  CAS  Google Scholar 

  • Scheibel AB, Tomiyasu U (1978) Dendritic sprouting in Alzheimer’s presenile dementia. Exp Neurol 60:1–8.

    PubMed  CAS  Google Scholar 

  • Sestan N, Artavanis-Tsakonas S, Rakic P (1999) Notch signaling mediates contact-dependent inhibition of cortical neurite growth. Science 286:741–746.

    PubMed  CAS  Google Scholar 

  • Song W, Nadeau P, Yuan M, Yang X, Shen J, Yankner BA (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc Natl Acad Sci USA 96:6959–6963.

    PubMed  CAS  Google Scholar 

  • Strom A, Castella P, Rockwood J, Wagner J, Caudy M (1997) Mediation of NGF signaling by post-translational inhibition of HES-1, a basic helix-loop-helix repressor of neuronal differentiation. Genes Dev 11:3168–3181.

    PubMed  CAS  Google Scholar 

  • Struhl G, Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398:522–525.

    PubMed  CAS  Google Scholar 

  • Struhl G, Greenwald I (2001) Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc Natl Acad Sci USA 98:229–234.

    PubMed  CAS  Google Scholar 

  • Takke C, Dornseifer PV, Weizsacker E, Campos-Ortega JA (1999) her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signalling. Development 126:1811–1821.

    PubMed  CAS  Google Scholar 

  • Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T (2001) Notchl and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55.

    PubMed  CAS  Google Scholar 

  • Tomita K, Ishibashi M, Nakahara K, Ang SL, Nakanishi S, Guillemot F, Kageyama R (1996) Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16:723–734.

    PubMed  CAS  Google Scholar 

  • Udolph G, Rath P, Chia W (2001) A requirement for Notch in the genesis of a subset of glial cells in the Drosophila embryonic central nervous system which arise through asymmetric divisions. Development 128:1457–1466.

    PubMed  CAS  Google Scholar 

  • Verdi JM, Bashirullah A, Goldhawk DE, Kubu CJ, Jamali M, Meakin SO, Lipshitz HD (1999) Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage. Proc Natl Acad Sci USA 96:10472–10476.

    PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Maynard TM, Jones SU, Weston JA (1999) NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23:71–81.

    PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Maynard TM, Weston JA (2000) Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Development 127:2811–2821.

    PubMed  CAS  Google Scholar 

  • Wang M, Sternberg PW (1999) Competence and commitment of Caenorhabditis elegans vulval precursor cells. Dev Biol 212:12–24.

    PubMed  CAS  Google Scholar 

  • Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA (1998) Notch receptors activation inhibits oligodendrocyte differentiation. Neuron 21:63–75.

    PubMed  Google Scholar 

  • Weinmaster G (1997) The ins and outs of Notch signaling. Mol Cell Neurosci 9:91–102.

    PubMed  CAS  Google Scholar 

  • Wesley CS, Saez L (2000) Notch responds differently to Delta and Wingless in cultured Drosophila cells. J Biol Chem 275:9099–9101.

    PubMed  CAS  Google Scholar 

  • Westlund B, Parry D, Clover R, Basson M, Johnson CD (1999) Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel 12 and hop-1 in Notch pathway signaling. Proc Natl Acad Sci USA 96:2497–2502.

    PubMed  CAS  Google Scholar 

  • Wettstein DA, Turner DL, Kintner C (1997) The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124:693–702.

    PubMed  CAS  Google Scholar 

  • Wittenburg N, Eimer S, Lakowski B, Rohrig S, Rudolph C, Baumeister R (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406:306–309.

    PubMed  CAS  Google Scholar 

  • Wurmbach E, Wech I, Preiss A (1999) The Enhancer of split complex of Drosophila melanogaster harbors three classes of Notch responsive genes. Mech Dev 80:171–180.

    PubMed  CAS  Google Scholar 

  • Yavari R, Adida C, Braγ-Ward P, Brines M, Xu T (1998) Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum Mol Genet 7:1161–1167.

    PubMed  CAS  Google Scholar 

  • Ye Y, Lukinova N, Fortini M (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398:525–529.

    PubMed  CAS  Google Scholar 

  • Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407:48–54.

    PubMed  CAS  Google Scholar 

  • Zecchini V, Brennan K, Martinez-Arias A (1999) An activity of Notch regulates JNK signalling and affects dorsal closure in Drosophila. Curr Biol 9:460–469.

    PubMed  CAS  Google Scholar 

  • Zeng C, Younger-Shepherd S, Jan LY, Jan YN (1998) Delta and Serrate are redundant Notch ligands required for asymmetric cell divisions within the Drosophila sensory organ lineage. Genes Dev 12:1086–1091.

    PubMed  CAS  Google Scholar 

  • Zhang DM, Levitan D, Yu G, Nishimura M, Chen F, Tandon A, Kawarai T, Arawaka S, Supala A, Song YQ, Rogaeva E, Liang Y, Holmes E, Milman P, Sab C, Zhang L, St George-Hyslop P (2000a) Mutation of the conserved N-terminal cysteine (Cys92) of human presenilin 1 causes increased A beta42 secretion in mammalian cells but impaired Notch/lin-12 signalling in C. elegans. Neuroreport 11:3227–3230.

    PubMed  CAS  Google Scholar 

  • Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA (2000b) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2:463–465.

    PubMed  CAS  Google Scholar 

  • Zheng JL, Shou J, Guillemot F, Kageyama R, Gao WQ (2000) Hesl is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560.

    PubMed  CAS  Google Scholar 

  • Zhong W, Feder JN, Jiang M-M, Jan LY, Jan YN (1996) Asymmetric localization of a mammalian Numb homolog during mouse cortical neurogenesis. Neuron 17:43–53.

    PubMed  CAS  Google Scholar 

  • Zhong W, Jiang MM, Schonemarin MD, Meneses JJ, Pedersen RA, Jan LY, Jan YN (2000) Mouse numb is an essential gene involved in cortical neurogenesis. Proc Natl Acad Sci USA 97:6844–6849.

    PubMed  CAS  Google Scholar 

  • Zine A, Van De Water TR, de Ribaupierre F (2000) Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127:3373–3383.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šestan, N., Rakic, P. (2002). Notch Signaling in the Brain: More than Just a Developmental Story. In: Christen, Y., Israël, A., De Strooper, B., Checler, F. (eds) Notch from Neurodevelopment to Neurodegeneration: Keeping the Fate. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55996-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55996-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62767-5

  • Online ISBN: 978-3-642-55996-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics