Advertisement

Level Set Models for Analysis of 2D and 3D Echocardiographic Data

  • A. Sarti
  • C. Lamberti
  • R. Malladi
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

We propose a partial differential equation (PDE) for filtering and segmentation of echocardiographic images based on a geometric-driven scheme. The method allows edge-preserving image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is borrowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time echocardiographic images are shown.

Keywords

Shape Recovery Active Contour Model Echocardiographic Image Signed Distance Function Ventricular Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Adalsteinsson and J. A. Sethian: A fast level set method for propagating interfaces, in J. Comp. Phys., Vol. 118(2), pp. 269–277, May 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel: Axioms and fundamental equations of image processing, Arch. Rational Mechanics 123, 1993.Google Scholar
  3. 3.
    W. Bommer, L. Weinert, A. Neumann, J. Neef, D. Mason, A. Demaria: Determination of right atrial and right ventricular size by two-dimensional echocardiography, Circulation, pp. 60–91 (1979)Google Scholar
  4. 4.
    V. Caselles, F. Catte. T. Coll, F. Dibos: A geometric model for active contours, Numerische Mathematik, Vol. 66, pp. 1–31, 1993.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. Caselles, R. Kimmel, and G. Sapiro: Geodesic active contours, in Proc. ICCV’95, Cambridge, MA 1995.Google Scholar
  6. 6.
    L.D Cohen: On active contour models and balloons CVGIP:Image Understanding vol. 53, pag. 211–218.Google Scholar
  7. 7.
    I. Cohen, L.D Cohen, N. Ayache: Using deformable surfaces to segment 3D images and infer differential structure CVGIP:Image Understanding vol. 56, pag. 242–263.Google Scholar
  8. 8.
    M. Grayson: The heat equation shrinks embedded plane curves to round points, J. Differential Geometry 26, 1987, pp. 285–314.MathSciNetzbMATHGoogle Scholar
  9. 9.
    A. Handlovičo vá, K. Mikula, A. Sarti: Numerical solution of parabolic equations related to level set formulation of mean curvature flow, Computing and Visualization in Science (1998)Google Scholar
  10. 10.
    C. Lamberti, F. Sgallari: Edge detection and velocity field for the analysis of heart motion, Digital Signal Processing 91, Elsevier (Editors V. Cappellini, A.G. Costantinides) pp. 603–608 (1991)Google Scholar
  11. 11.
    W.E. Lorensen, H.E. Cline: Marching cubes: a high resolution 3D surface construction algorithm, Computer Graph., vol. 21, pp. 163–169 (1987)CrossRefGoogle Scholar
  12. 12.
    M. Kass, A. Witkin, D. Terzopoulos: Snakes: Active contour models, International Journal of Computer Vision, vol. 1, pp. 321–331, 1988CrossRefGoogle Scholar
  13. 13.
    R. Malladi, J.A. Sethian, B.C. Vemuri: A topology-independent shape modeling scheme, in SPIE: Geometric Methods in Computer Vision II, Vol. 2031, pp. 246–258, 1993.Google Scholar
  14. 14.
    R. Malladi, J. A. Sethian and B. C. Vemuri: Shape modeling with front propagation: A level set approach, IEEE Trans. on PAMI 17, 1995, pp. 158–175.CrossRefGoogle Scholar
  15. 15.
    R. Malladi and J. A. Sethian: Image processing: Flows under Min/Max curvature and mean curvature, in Graphical Models and Image Processing, Vol. 58(2), pp. 127–141, March 1996.MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Malladi and J. A. Sethian: Level set methods for curvature flow, image enchancement, and shape recovery in medical images, in Visualization and Mathematics: Experiments, Simulations, and Environments, Eds. H. C. Hege, K. Polthier, pp. 329–345, Springer Verlag, Heidelberg, 1997.Google Scholar
  17. 17.
    R. Malladi and J. A. Sethian: A real-time algorithm for medical shape recovery, in Proceedings of ICCV’ 98, pp. 304–310, Mumbai India, January 1998.Google Scholar
  18. 18.
    K. Mikula, A. Sarti, C. Lamberti: Geometrical diffusion in 3D echocardiography, Proc. of ALGORITMY’ 97-Conference on Scientific Computing, West Tatra Mountains, Slovakia, 1997.Google Scholar
  19. 19.
    N. K. Nordstrom: Variational edge detection, PhD dissertation, Department of electrical engineering, University of California, Berkeley, 1990Google Scholar
  20. 20.
    S. J. Osher and J. A. Sethian: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics 79, 1988, pp. 12–49.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pini R, Giannazzo G, Di Bari M, Innocenti F, Rega L, Casolo G, and Devereux RB: Transthoracic three-dimensional echocardiographic reconstruction of left and right ventricles: In vitro validation and comparison with magnetic resonance imaging, American Heart Journal, 133: pp. 221–229, 1997.CrossRefGoogle Scholar
  22. 22.
    Pini R, Giannazzo G, Di Bari M, Innocenti F, Marchionni N, Gori A, and Devereux RB: Left ventricular volume determination by 3-D echocardiographic volume imaging and biplane angiography, Journal of Noninvasive Cardiology, 3, pp. 46–51, 1999.Google Scholar
  23. 23.
    Bart M. ter Haar Romeny (Ed.): Geometry-driven diffusion in computer vision, Kluwer Academic Press, 1994.Google Scholar
  24. 24.
    G. Sapiro: Color snakes, Hewlett-Packard Lab. tech report, 1995.Google Scholar
  25. 25.
    G. Sapiro, R. Kimmel, D. Shaked, B. B. Kimia, and A. M. Bruckstein: Implementing continuous-scale morphology via curve evolution, Pattern Recognition, Vol. 26(9), pp. 1363–1372, 1993.CrossRefGoogle Scholar
  26. 26.
    Sarti, A., Mikula, K., Sgallari, F.: Nonlinear multiscale analysis of 3D echocardiographic sequences. IEEE Transactions on Medical Imaging 18, No. 6 (1999) 453–466CrossRefGoogle Scholar
  27. 27.
    Sarti, A., Ortiz de Solorzano, C., Lockett, S. and Malladi, R.: A Geometric Model for 3-D Confocal Image Analysis. IEEE Transactions on Biomedical Engineering 45, No. 12, (2000), 1600–1610Google Scholar
  28. 28.
    Sarti, A., Malladi, R., Sethian, J.A.: Subjective Surfaces: A Method for Completing Missing Boundaries. Proceedings of the National Academy of Sciences of the United States of America, Vol 12, N.97, pag. 6258–6263, 2000.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sarti, A., Malladi, R., Sethian, J.A.: Subjective Surfaces: A Geometric Model for Boundary Completion, submitted to International Journal of Computer Vision, 2000.Google Scholar
  30. 30.
    Sarti, A., Malladi, R.: A geometric level set model for ultrasounds analysis, LBNL-44442, University of California, Berkeley, 1999.Google Scholar
  31. 31.
    Sarti, A., Wiegmann, A.: Edges are image discontinuities-fast edge enhancement based on explicit-jump multiscale analysis, LBNL-42373, University of California, Berkeley, 1999.Google Scholar
  32. 32.
    J. A. Sethian: A review of recent numerical algorithms for hypersurfaces moving with curvature dependent flows, J. Differential Geometry 31, 1989, pp. 131–161.MathSciNetGoogle Scholar
  33. 33.
    J. A. Sethian: Level set methods: Evolving interfaces in geometry, fluid mechanics, computer vision, and material science, Cambridge University Press, 1997.Google Scholar
  34. 34.
    W. Shroeder, K. Martin, B. Lorensen: The visualization Toolkit, Prentice Hall PTR., New Jersey (1996)Google Scholar
  35. 35.
    S. Shutilov: Fundamental Physics of Ultrasounds, Gordon and Breach, New York, 1988Google Scholar
  36. 36.
    N. Sochen, R. Kimmel, and R. Malladi: A General Framework for Low Level Vision, in IEEE Transactions on Image Processing, special issue on PDEs and Geometry-Driven Diffusion in Image Processing and Analysis, Vol. 7, No. 3, pp. 310–318, March 1998.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Sarti
    • 2
  • C. Lamberti
    • 2
  • R. Malladi
    • 1
  1. 1.Department of Mathematics, University of California, Berkeley and Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.DEISUniversity of BolognaItaly

Personalised recommendations