Advertisement

Fast Methods for Shape Extraction in Medical and Biomedical Imaging

  • R. Malladi
  • J. A. Sethian
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

We present a fast shape recovery technique in 2D and 3D with specific applications in modeling shapes from medical and biomedical imagery. This approach and the algorithms described is similar in spirit to our previous work in [16,18], is topologically adaptable, and runs in O(N log N) time where N is the total number of points visited in the domain. Our technique is based on the level set shape recovery scheme introduced in [16,3] and the fast marching method in [27] for computing solutions to static Hamilton-Jacobi equations.

Keywords

Shape Modeling Object Boundary Shape Recovery Active Contour Model Complete Binary Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comp. Phys., Vol. 118(2), pp. 269–277, May 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D. Adalsteinsson, R. Kimmel, R. Malladi, and J. A. Sethian, “ Fast marching methods for computing solutions to static Hamilton-Jacobi equations,” submitted for publication, SIAM Journal of Numerical Analysis, January 1996.Google Scholar
  3. 3.
    V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numerische Mathematik, Vol. 66(1), pp. 1–32, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic snakes,” Proc. of ICCV, MIT, Cambridge MA, June 1995.Google Scholar
  5. 5.
    V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert, “Three-dimensional object modeling via minimal surfaces,” Proc. ECCV, pp. 97–106, Cambridge, UK, April 1996.Google Scholar
  6. 6.
    D. L. Chopp, “Computing minimal surfaces via level set curvature flow,” Journal of Computational Physics, Vol. 106, pp. 77–91, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast active object tracking in color video,” in Proc. the 21 IEEE convention of the Electrical and Electronic Engineers in Israel, Tel Aviv, April 2000.Google Scholar
  8. 8.
    Helmsen, J., Puckett, E.G., Colella, P., and Dorr, M., Two new methods for simulating photolithography development, SPIE 1996 International Symposium on Microlithography, SPIE, v. 2726, June, 1996.Google Scholar
  9. 9.
    M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal of Computer Vision, Vol. 1, pp. 321–331, 1988.CrossRefGoogle Scholar
  10. 10.
    S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, “Gradient flows and geometric active contour models,” Proc. of ICCV, MIT, Cambridge MA, June 1995.Google Scholar
  11. 11.
    R. Malladi and J. A. Sethian, “An O(N log N) algorithm for shape modeling,” Proc. Natl. Acad. Sci., USA, Vol. 93, pp. 9389–9392, September 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    R. Malladi and J. A. Sethian, “Level set methods for curvature flow, image enhancement, and shape recovery in medical images,” Proc. of International Conference on Mathematics and Visualization, H. C. Hege, K. Polthier (eds), pp. 255–267, Springer-Verlag, Berlin, Summer 1996.Google Scholar
  13. 13.
    R. Malladi and J. A. Sethian, “Image processing via level set curvature flow,” Proc. Natl. Acad. Sci., USA, Vol. 92, pp. 7046–7050, July 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    R. Malladi and J. A. Sethian, “Image processing: Flows under Min/Max curvature and mean curvature,” Graphics Models and Image Processing, Vol. 58(2), pp. 127–141, March 1996.MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Malladi and J. A. Sethian, “A unified approach to noise removal, image enhancement, and shape recovery,” IEEE Transactions on Image Processing, Vol. 5, No. 11, November 1996.Google Scholar
  16. 16.
    R. Malladi, J. A. Sethian, and B. C. Vemuri, “A topology-independent shape modeling scheme,” in Proc. of SPIE Conference on Geometric Methods in Computer Vision II, Vol. 2031, San Diego, California, pp. 246–258, July 1993.Google Scholar
  17. 17.
    R. Malladi, J. A. Sethian, and B. C. Vemuri, “Evolutionary fronts for topologyindependent shape modeling and recovery,” in Proceedings of Third European Conference on Computer Vision, LNCS Vol. 800, pp. 3–13, Stockholm, Sweden, May 1994.Google Scholar
  18. 18.
    R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: A level set approach,” in IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 17, No. 2, pp. 158–175, Feb. 1995.CrossRefGoogle Scholar
  19. 19.
    R. Malladi, R. Kimmel, D. Adelsteinsson, G. Sapiro, V. Caselles, and J. A. Sethian, “A geometric approach to segmentation and analysis of 3D medical images,” Proc. of IEEE/SIAM workshop on Mathematical Methods in Biomedical Image Analysis, pp. 244–252, San Francisco, CA, June 1996; submitted to CVIU.Google Scholar
  20. 20.
    R. B. Milne, “An adaptive level set method,” Ph. D. Thesis, Report LBNL-39216, Lawrence Berkeley National Laboratory, University of California, December 1995.Google Scholar
  21. 21.
    T. McInerney and D. Terzopoulos, “Topologically adaptable snakes,” Proc. ICCV, Cambridge, MA, June 1995.Google Scholar
  22. 22.
    S. Osher and J. A. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation,” Journal of Computational Physics, Vol. 79, pp. 12–49, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    N. K. Paragios and R. Deriche, “A PDE-based level approach for detections and tracking of moving objects,” in Proceedings of ICCV’98, pp. 1139–1145, Bombay, India, Jan. 1998.Google Scholar
  24. 24.
    N. K. Paragios and R. Deriche, “Coupled geodesic active regions for image segmentations: A level set approach,” in Proc. ECCV, Dublin, Ireland, June 2000.Google Scholar
  25. 25.
    R. Sedgewick, Algorithms, Addison-Wesley Publ., 1988.Google Scholar
  26. 26.
    J. A. Sethian, “Curvature and the evolution of fronts,” Commun. in Mathematical Physics, Vol. 101, pp. 487–499, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    J. A. Sethian, “A marching level set method for monotonically advancing fronts,” Proc. Natl. Acad. Sci., USA, Vol. 93(4), 1996.Google Scholar
  28. 28.
    J. A. Sethian, “A review of the theory, algorithms, and applications of level set methods for propagating interfaces,” Acta Numerica, pp. 309–395, 1996.Google Scholar
  29. 29.
    Sethian, J.A., Fast Marching Level Set Methods for Three-Dimensional Photolithography Development, Proceedings, SPIE 1996 International Symposium on Microlithography, Santa Clara, California, June, 1996.Google Scholar
  30. 30.
    J. A. Sethian, Level set methods: Evolving interfaces in geometry, fluid dynamics, computer vision, and material sciences, Cambridge University Press, 1996.Google Scholar
  31. 31.
    J. Shah, “Recovery of shapes by evolution of zero-crossings,” Tech. Report, Math. Dept, Northwestern University, Boston, MA, 1995.Google Scholar
  32. 32.
    N. Sochen, R. Kimmel, and R. Malladi, “From high energy physics to low level vision,” Report LBNL-39243, Lawrence Berkeley Natl. Laboratory, Berkeley, August 1996; submitted to IEEE Trans. Image Processing, special issue on PDE and Geometry-Driven Diffusion in Image Processing and Analysis.Google Scholar
  33. 33.
    D. Terzopoulos, A. Witkin, and M. Kass, “Constraints on deformable models: Recovering 3D shape and nonrigid motions,” Artificial Intelligence, Vol. 36, pp. 91–123, 1988.zbMATHCrossRefGoogle Scholar
  34. 34.
    Tsitsiklis, J.N., Efficient Algorithms for Globally Optimal Trajectories, IEEE Transactions on Automatic Control, Volume 40, pp. 1528–1538, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    R. T. Whitaker, “Algorithms for implicit deformable models,” Proc. ICCV, pp. 822–827, Cambridge, MA, June 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • R. Malladi
    • 1
    • 2
  • J. A. Sethian
    • 1
    • 2
  1. 1.Lawrence Berkeley National LaboratoryUSA
  2. 2.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations