Melt Blowing pp 111-134 | Cite as

Magnetic Filtering PFM

  • L. S. Pinchuk
  • V. A. Goldade
  • A. V. Makarevich
  • V. N. Kestelman
Part of the Springer Series in Materials Processing book series (SSMATERIALSPROC)


The V.A. Belyi Metal-Polymer Research Institute of NASB (MPRI) has elaborated a new class of filtering materials — magnetic PFM [1-8]. The technological base for manufacturing such materials is the melt blowing technique involving the following procedures: extrusion of a polymer melt filled by ferrite (barium or strontium) powder, fiber extension by gas flow, and fiber treatment in a magnetic field. The polymer melt is extruded through spinneret holes whose diameter far exceeds that of the filler particle. The thermal regime of spraying provides for cohesive bonding of the fibers on the forming substrate. The material is also textured during spraying. The final stage of magnetic PFM or finished FE manufacture is filler particle magnetizing in a permanent or pulse magnetic field.


Double Electrical Layer Fiber Diameter Filler Particle Carbonyl Iron Filtration Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Chapter 8

  1. 1.
    L.S. Pinchuk, V.A. Goldade, and Yu.V. Gromyko. Magnetic fibrous polymer materials for ultrafine filtration of liquids. Proc. 6th World Filtration Congr. Nagoya, 1993, pp. 940–942.Google Scholar
  2. 2.
    L.S. Pinchuk, and V.A. Goldade. Magnetic polymeric fibrous materials. Proc. Int. Conf. Adv. Mater, Process. Technol. (AMPT-93), Dublin. 1993. Vol.1 pp. 347–353.Google Scholar
  3. 3.
    V.A. Goldade, Yu.V. Gromyko, E.M. Markov, and L.S. Pinchuk. Polymeric fibrous magnetic materials for automobile oil filters. Proc. 26th Int. Symp. Automot. Technol. Automotion (ISATA-93). Dedicated Conf. on New and Alternative Materials, Aachen. 1993, pp. 391–401.Google Scholar
  4. 4.
    L.S. Pinchuk, V.A. Goldade, and O.K. Kwon. Liquid filtration across fibrous polymer materials-carriers of magnetic field. Proc. Russian AS. 1993. Vol.332. No.2, pp. 207–208.Google Scholar
  5. 5.
    V.A. Goldade, and E.M. Markov. Investigation of structure and properties of magnetic fibrous polymer materials. Mech. Composite Mater 1995 Vol.31, No.3,pp. 291–297.Google Scholar
  6. 6.
    E.M. Markov, L.S. Pinchuk, V.A Goldade., et al. Filtration of wear debris by polymer magnetic filters. Friction and Wear. 1995, Vol.16. No.3, pp. 518–522.Google Scholar
  7. 7.
    L.S. Pinchuk, L.V. Markova, Yu.V. Gromyko. et al. Polymeric magnetic fibrous filters. J. Mater. Process. Technol., 1995, Vol.55. pp. 345–350.CrossRefGoogle Scholar
  8. 8.
    Kravtsov A.G. Development of polymer fibrous materials for fine filtration of technological media. PhD Thesis, Gomel. 1998.Google Scholar
  9. 9.
    A.V. Sandulyak. Magneto-Filtration Cleaning of Liquids and Gases. Moscow, Khimia. 1988.Google Scholar
  10. 10.
    L. V. Markova, E.M. Markov, Yu.V. Gromyko, and L.S. Pinchuk. About liquids filtration across fibrous materials—sources of magnetic fields. Proc. Belarus AS, 1994, Vol.38. No.1, pp. 119–122.Google Scholar
  11. 11.
    C.N. Davies. Air Filtration. London, NY, Academic Press. 1973.Google Scholar
  12. 12.
    B.G. Ahn, U.S. Choi, O.K. Kwon. and T.J. Moon. Filtration characteristics of fibrous polymeric filters contained magnetic particulate filler. Adv. Filtration Sep. Technol., AFS, 1998, Vol.12. pp. 1–9.Google Scholar
  13. 13.
    L.V. Markova Problems of magneto-optic wear diagnostics of lubricated moving junctions. Sov. J. Friction Wear. 1990, Vol.11. No.2. pp. 124–127.Google Scholar
  14. 14.
    C. Dickenson, ed. Filters and Filtration. 3rd ed. Oxford, Elsevier, 1992.Google Scholar
  15. 15.
    A.V. Makarevich, A.G. Kravtsov, and L.S. Pinchuk. Influence of spatiallyinhomogeneous magnetic fields on coagulation processes in dispersed systems. J. Appl. Chem., 1998, Vol.71, No.5, pp. 817–823.Google Scholar
  16. 16.
    G.A. Luscheikin Methods of Polym.ers Electrical Properties Investigation. Moscow, Khirnia. 1988.Google Scholar
  17. 17.
    S.V. Vonsovski. Magnetism: Magnetic Properties of Dia-, Para-, Ferro-, Antiferro-and Ferri-Magnetics. Moscow, Nanka, 1971.Google Scholar
  18. 18.
    S. Chikazumi. Physics of Magnetism. London, NY, Tokyo, John Wiley & Sons, 1964.Google Scholar
  19. 19.
    O.V. Akopova. and B.V. Eremenko. Stability of quartz water suspensions in electrolyte solutions. Colloidal J. 1992, Vol.54, No.5, pp. 19–23.Google Scholar
  20. 20.
    O.M. Merkushev, A.I. Alekseev, I.S. Lavrov, and A.E. Skachkov. About drops behavior of real emulsions in external electric field. Colloidal J. 1974, Vol.36, No.2, pp. 391–392.Google Scholar
  21. 21.
    N.Ph. Bondarenko, and E.Z. Gak. Electromagnetic Hydrophysics and Nature Phenomena. St.-Petersburg, State Agricultural University, 1994.Google Scholar
  22. 22.
    V.I. Klassen. Wettability change of solid bodies by water after magnetic field action. Proc. USSR AS, 1966. Vol.166, No.6. pp. 1383–1385.Google Scholar
  23. 23.
    A.M. Demetski and A.G. Alekseev. Artificial Magnetic Fields in Medicine. Minsk, Belarus, 1981.Google Scholar
  24. 24.
    V.I. Klassen. Magnetization of Water Systems. Moscow, Khimia, 1982.Google Scholar
  25. 25.
    L.A. Kul’ski, and S.S. Dushkina. Magnetic Fidd and Water’ Treahncnt Pmasses. Kiev, Naukova dumka, 1988.Google Scholar
  26. 26.
    L.S. Pinchuk, E.M. Markov, and A.G. Kravtsov. Magnetic field influence on water flow through clearance of solid bodies contact. J. Tech. Phys., 1996, Vol.66, No.4, pp. 30–35.Google Scholar
  27. 27.
    J.T. Davies, and E.K. Rideal. Interfacial Phenomena. NY. Academic Press. 1963.Google Scholar
  28. 28.
    B.D. Summ, and Yu.V. Goryunov. Physico-Chemical Fundamentals of Wetting and Spreading. Moscow, Khimia. 1976.Google Scholar
  29. 29.
    Yu.M. Sokol’ski. Magnetization of Water: The Truth and Fantasy. Leningrad, Khimia. 1990.Google Scholar
  30. 30.
    F. Franks. ed. Water: A Comprehensive Treatise. NY, London, Elsevier,1979. Vol.8.Google Scholar
  31. 31.
    V.I. Minenko. Electromagnetic Treatment of Water in Heat Power Engineering. Khar’kov, Prapor,1981.Google Scholar
  32. 32.
    V.I. Yashkevich. About possible mcchanisms of outer conditions influence on water systems activation by electromagnetic and other influcnces. Abstr. 4th USSR Conf. Magn. Treatment of Water Syst., Moscow, State University. 1981. p.7.Google Scholar
  33. 33.
    O.I. Martynova, B.G. Gusev, and E.A. Leontiev. About nwchanisll1 of magnetic field infiuence on salt water solutions. Phys. Sci. Rev., 1969, Vol.98, No.1, pp. 195–199.Google Scholar
  34. 34.
    K.F. Tabenikchin. Non-Reagent Methods of Water Treatment in Power Units. Moscow, Khimia. 1985.Google Scholar
  35. 35.
    Yu.V. Myagkov, and I.V. Myagkov. Model of magnetic activation mechanism. Abstr. 4th USSR Conf. Magn. Treatment Water Syst., Moscow, State University. 1981, pp. 11–12.Google Scholar
  36. 36.
    V. Patrovsky. Hydrogen peroxide in magnetically treated water. Mol. Phys., 1976, Vol. 31. No.4, pp.1051–1053.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • L. S. Pinchuk
    • 1
  • V. A. Goldade
    • 1
  • A. V. Makarevich
    • 1
  • V. N. Kestelman
    • 2
  1. 1.V. A. Belyi Metal-Polymer Research Institute of the National Academy of Sciences of BelarusGomelBelarus
  2. 2.KVN International Inc.King of PrussiaUSA

Personalised recommendations