Melt Blowing pp 95-109 | Cite as

Electret Filtering PFM

  • L. S. Pinchuk
  • V. A. Goldade
  • A. V. Makarevich
  • V. N. Kestelman
Part of the Springer Series in Materials Processing book series (SSMATERIALSPROC)


Cleaning of air and gas from suspended solid and liquid particles is of paramount importance in medicine, biochemistry, dectronics, the atomic power industry and many other fields. The most simple, reliable and economical way of cleaning gaseous media of highly dispersed aerosol is using filters with a fibrous FE. The search for highly efficient purification systems able to remove submicron particles from air has led to the development of electret filters consisting of a FE with charged polymer fibers [1-4].


Fiber Surface Corona Discharge Fibrous Material Trapping Center Aerodynamic Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Chapter 7

  1. 1.
    R.C. Brown. Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters. Oxford, NY, Seoul, Tokyo, Pergamon Press, 1993.Google Scholar
  2. 2.
    C.N. Davies. Air Filtmtion. London, NY, Academic Press. 1973.Google Scholar
  3. 3.
    G.M. Sessler, ed. Electrets. 2nd ed. Berlin. Heidelberg, NY, London, Paris, Tokyo, Springer Verlag. 1987.Google Scholar
  4. 4.
    J. van Turnhout. The lise of polymers for electrets. J. Electrostatics, 1975, No.1, pp. 147–163.Google Scholar
  5. 5.
    Yu.V. Gromyko, and A.G. Kravtsov. Electret state of fibrous material based on polyethylene. Proc. Belarus AS. 1995, Vol. 39, No.5, pp. 112–116.Google Scholar
  6. 6.
    G.M. Bartenev, and R.M. Aliguliev. Relaxation spectrometry of low density polyethylene. High-Mol. Comp. 1982, Vol. 24A, No. 9. pp. 1842–1849.Google Scholar
  7. 7.
    J. van Turnhout. Thermally Stimulated Discharge of Polymer Electrets. Amsterdam, Elsevier. 1975.Google Scholar
  8. 8.
    K.C. Kao, and W. Hwang. Electrical Transport in Solids. Oxford, NY, Toronto, Sydney, Paris, Frankfurt, Pergamon Press, 1981.Google Scholar
  9. 9.
    J. Frenkel. On pre-breakdown plwnolllena in insulators and semiconductors. Phys. Rev., 1938, Vol. 54. pp. 647–648.CrossRefGoogle Scholar
  10. 10.
    A.D. Zimon. Adhesion of Dust and Powders. Moscow, Khimia, 1967.Google Scholar
  11. 11.
    B. V. Derjaguin, and M.M. Kusakov. An experimental investigation of polymolecular solvate films. Acta Phys. Chim. URSS, 1939, Vol. 10. No. 2 pp. 25–44: No.2, pp. 153–174.Google Scholar
  12. 12.
    B. V. Derjaguin, and N.V. Churaev. On the question of determining the concept of disjoining pressure. J. Colloid Interface Sci.. 1978, Vol. 66. No. 3. pp. 389–398.CrossRefGoogle Scholar
  13. 13.
    B. V. Derjaguin, and L.D. Landau. Theory of the stability of strongly charged lyophobic sols. Acta Phys.Chim. URSS, 1941, Vol.14, No.6, pp. 633–662.Google Scholar
  14. 14.
    A.S. Akhmatov. Molecular Physics of Boundary Friction. Moscow, Phismatgiz. 1963.Google Scholar
  15. 15.
    B.V. Derjaguin, and A.S. Titievskaya. Investigations of the forces of interaction of surfaces in different media. Discuss, Faraday Sos., 1954, No.18, pp. 85–98.Google Scholar
  16. 16.
    S. Marchelja, and N. Radich. Repulsion of interfaces due to boundary water. Chem. Phys. Lett. 1976. Vol.42, No.1, pp. 129–134.CrossRefGoogle Scholar
  17. 17.
    A.N. Frumkin, V.S. Bagotski, Z.A. Iofa, and B.N. Kabanov. Kinetics of Electrade Processes. Moscow, State University. 1952.Google Scholar
  18. 18.
    V.S. Mironov. Electrophysical activation of polymer materials at frictional and electrical affects. Dr. Sci. Thesis. Gomel. 1998.Google Scholar
  19. 19.
    M. Blitshteyn. Wetting tension measurements on corona-treated polymer films. TAPPI J.. 1995, Vol.78, No.3. pp. 138–143.Google Scholar
  20. 20.
    W. Lin, and Y.-L. Hsieh. Argon glow discharge and vapor-phase grafting of vinyl monomers On wettability of polyethylene. Polymer Sci. B: Polym. Phys., 1997. Vol.35, No.7. pp. 1145–1159.CrossRefGoogle Scholar
  21. 21.
    V.G. Plcvachuk. I.M. Vertyachikh, V.A. Goldade, and L.S. Pinchuk. Effect of the charge of polymer electret OIl the spreading of liquids. Polymer Sci., Ser. A., 1995, Vol.37. No.10, pp. 1071–1074.Google Scholar
  22. 22.
    B.D. Summ, and Yu.V. Gorjunov. Physicochemical Fundamentals of Wetting and Spreading. Moscow, Khimia. 1976.Google Scholar
  23. 23.
    I.M. Vertyachikh, V.A. Goldade, A.S. Neverov, and L.S. Pinchuk. Influence of electric field of polymer electret on vapor sorption of organic dissolvent. High-Mol. Comp., 1982, Vol.24B, No.9, pp. 683–687Google Scholar
  24. 24.
    I.V. Petryanov, V.I. Kozlov, P.I. Basmanov, and B.I. Ogorodnikov. Fibrous Filtering Materials FP. Moscow, Znanie. 1968.Google Scholar
  25. 25.
    Yu.N. Filatov. Electro-Forming of Fibrous Materials. Moscow, Oil & Gas PuhL 1997.Google Scholar
  26. 26.
    U.S.S.R. Patent 1434737. C08J 5/18. Method of filtering material manufactured from polymer fibers. V.S. Mironov, L.S. Pinchuk, et al. 1988.Google Scholar
  27. 27.
    A.G. Kravtsov, L.S. Pinchuk, and V.A. Goldade. Melt-blown materials for protecting of respiratory organs. Chem. Fibers, 2000. No.6, pp. 42–45.Google Scholar
  28. 28.
    A.I. Sviridenok, A.F. Klimovich, and V.N. Kestelman. Electrophysical Phenomena in the Tribology of Polymers. Gordon and Breach, 1999.Google Scholar
  29. 29.
    U.S.S.R. Patent 1351632. BO1D 39/00. Filter for aerosols cleaning. Yu.V. Gromyko, A.F. Klimovich. and S.I. Guzenkov. 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • L. S. Pinchuk
    • 1
  • V. A. Goldade
    • 1
  • A. V. Makarevich
    • 1
  • V. N. Kestelman
    • 2
  1. 1.V. A. Belyi Metal-Polymer Research Institute of the National Academy of Sciences of BelarusGomelBelarus
  2. 2.KVN International Inc.King of PrussiaUSA

Personalised recommendations