Advertisement

Proof of the strong subadditivity of quantum-mechanical entropy

  • Elliott H. Lieb
  • Mary Beth Ruskai

Abstract

In this paper we prove several theorems about quantum mechanical entropy, in particular, that it is strongly subadditive (SSA). These theorems were announced in an earlier note,1 to which we refer the reader for a discussion of the physical significance of SSA and for a review of the historical background. We repeat here a bibliography of relevant papers.2-9.

Keywords

Compact Operator Positive Matrice Strong Subadditivity Positive Compact Operator Mechanical Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Note

  1. 1.
    E. H. Lieb and M. B. Ruskai, Phys. Rev. Letters 30, 434 (1973).MathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Araki and E. H. Lieb, Commun. Math. Phys. 18, 160 (1970).MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Bauman and R. Jost, in Problems of Theoretical Physics; Essays Dedicated to N. N. Bogoliubov (Moscow, Nauka, 1969), p. 285.Google Scholar
  4. 4.
    R. Jost, in Quanta: Essays in Theoretical Physics Dedicated to Gregor Wentzel, edited by P. G. O. Freund, C. J. Goebel and Y. Nambu (University of Chicago Press, Chicago, 1970), p. 13.Google Scholar
  5. 5.
    F Baumann, Helv. Phys. Acta 44, 95 (1971).MathSciNetGoogle Scholar
  6. 6.
    D. W. Robinson and D. Ruelle, Commun. Math. Phys. 5, 288 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    O. Lanford III and D. W. Robinson, J. Math. Phys. 9, 1120 (1968).zbMATHCrossRefGoogle Scholar
  8. 8.
    E. P. Wigner and M. M. Yanase, Proc Nat. Acad. Sci. 49, 910 (1963); Can. J. Math. 16. 397(1964).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A. Uhlmann. “Endlich Dimensionale Dichtematrizen, II”. Wiss. Z. Karl-Marx-University Leipzig, Math-Naturwiss. R. 22, Jg. H.2, 139 (1973).MathSciNetGoogle Scholar
  10. 10.
    D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969), Theorem 2.5.2.zbMATHGoogle Scholar
  11. 11.
    E. H. Lieb, “Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture”, Adv. in Math., to appear Dec. 1973.Google Scholar
  12. 12.
    H. Epstein, Commun. Math. Phys. 37, 317 (1973).CrossRefGoogle Scholar
  13. 13.
    M. B. Ruskai, “A Generalization of the Entropy Using Traces on von Neumann Algebras,” preprint.Google Scholar
  14. 14.
    O. Lanford III, in Statistical Mechanics and Quantum Field Theory edited by C. De Witt and R. Stora (Gordon and Breach, New York, 1971), p. 174.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  • Mary Beth Ruskai
    • 2
  1. 1.I.H.E.S.France
  2. 2.Department of MathematicsM.I.T.CambridgeUSA

Personalised recommendations