Advertisement

A Fundamental Property of Quantum-Mechanical Entropy

  • Elliott H. Lieb
  • Mary Beth Ruskai

Abstract

There are some properties of entropy, such as concavity and subadditivity, that are known to hold (in classical and in quantum mechanics) irrespective of any assumptions on the detailed dynamics of a system. These properties are consequences of the definition of entropy as S(p) =—Trp lnp (quantum), (1a) S(p) =- f p lnp (classical continuous), (1b) S(p)= p i Inpi (classical discrete), (1c) where Tr means trace, p is a density matrix in (1a), and p is a distribution function (usually on R 6n) in (1b). In (1c) the p i are discrete energy level probabilities.

Keywords

Density Matrix Pure State Generalize Entropy Physical Review Letter Arbitrary Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Note

  1. 1.
    D.W. Robinson and D. Ruelle, Commun. Math. Phys. 5, 288 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    O. Lanford, III, and D. W. Robinson, J. Math. Phys. (N. Y.) 9, 1120 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    F. Baumann, Helv. Phys. Acta 44, 95 (1971).MathSciNetGoogle Scholar
  4. 4.
    F. Bauman and R. Jost, in Problems of Theoretical Physics; Essays Dedicated to N. N. Bogoliubov (Nauka, Moscow, 1969), pp. 285–293.Google Scholar
  5. 5.
    H. Araki and E. H. Lieb, Commun. Math. Phys. 18, 160 (1970).MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. P. Wigner and M. M. Yanase, Proc. Nat. Acad. Sci. U. S. 49, 910 (1963), and Can. J. Math..16, 397 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    R. Jost, in “Quanta”—Essays in Theoretical Physics Dedicated to Gregor Wentzel, edited by P. G. O. Freund, C. J. Goebel, and Y. Nambu (Univ. of Chicago Press, Chicago, 111., 1970), pp. 13–19.Google Scholar
  8. 8.
    E. H. Lieb, “Convex Trace Functions and Proof of the Wigner-Yanase-Dyson Conjecture” (to be published).Google Scholar
  9. 9.
    E. H. Lieb and M. B. Ruskai, “Proof of the Strong Subadditivity of Quantum Mechanical Entropy” (to be published).Google Scholar
  10. 10.
    S. Golden, Phys. Rev. B 137, 1127 (1965).MathSciNetCrossRefGoogle Scholar
  11. 11.
    C. J. Thompson, J. Math Phys. (N. Y.) 6, 1812 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  • Mary Beth Ruskai
    • 2
  1. 1.Institut des Hautes Etudes ScientifiquesFrance
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations