Advertisement

Entropy Inequalities

  • Huzihiro Araki
  • Elliott H. Lieb

Abstract

Some inequalities and relations among entropies of reduced quantum mechanical density matrices are discussed and proved. While these are not as strong as those available for classical systems they are nonetheless powerful enough to establish the existence of the limiting mean entropy for translationally invariant states of quantum continuous systems.

Keywords

Density Matrix Disjoint Union Spectral Decomposition Invariant State Selfadjoint Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruelle, D.: Statistical mechanics. Proposition (7.2.6). New York: W. A. Benjamin 1969. For related results the reader is referred to: A. Huber in “Mathematical Methods in Solid State and Superfluid Theory”, R. C. Clark and G. H. Derrick ed., Oliver and Boyd, Edinburgh, 1969, page 364; H. Falk, “Inequalities of J. W. Gibbs” to appear in Amer. J. Phys., July, 1970.zbMATHGoogle Scholar
  2. 2.
    Lanford, O. E., Robinson, D. W.: J. Math. Phys. 9, 1120–1125 (1968). Partial results have been obtained by F. Baumann and R. Jost, Problems of theoretical physics. Essays dedicated to N. N. Bogoliubov, p. 285. Moscow: Nauka 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ruelle, D.: op. cit., Proposition (2.5.4).Google Scholar
  4. 4.
    op. cit., Proposition (2.5.2).Google Scholar
  5. 5.
    Golden, S.: Phys. Rev. 137, B1127 (1965); — C. Thompson, J. Math. Phys. 6, 1812 (1965).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ruelle, D.: Phys. Rev. 137, B1127 (1965) op. cit., Proposition (7.2.10) and Section (7.2.13). See also H. Falk and E. Adler, Phys. Rev. 168, 185-187 (1968); L. W. Bruch and H. Falk, “Gibbs Inequality in Quantum Statistical Mechanics” to appear in Phys. Rev.CrossRefGoogle Scholar
  7. 7.
    Araki, H., Woods, E. J.: Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A, 2, 157–242 (1966). Definition 2.1.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ruelle, D.: op. cit., Section (7.2.13).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Miracle-Sole, S., Robinson, D.W.: Commun. Math. Phys. 14, 235–270 (1969).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Huzihiro Araki
    • 1
  • Elliott H. Lieb
    • 2
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations