Inequalities pp 417-439 | Cite as

Best Constants in Young’s Inequality, Its Converse, and Its Generalization to More than Three Functions

  • Herm Jan Brascamp
  • Elliott H. Lieb


The best possible constant Dmt in the inequality | ∬ dx dyf(x)g(x —y) h(y)|< Dpgt||f||p||g||Q||h||t, p,q,t>|, 1/p + llq+ 1/t = 2, is determined; the equality is reached if /, g, and h are appropriate Gaussians. The same is shown to be true for the converse inequality (0 < p, q < 1, t < 0), in which case the inequality is reversed. Furthermore, an analogous property is proved for an integral of k functions over n variables, each function depending on a linear combination of the n variables; some of the functions may be taken to be fixed Gaussians. Two applications are given, one of which is a pr∞f of Nelson’s hypercontractive inequality.


Equality Sign Good Constant Converse Inequality Rearrangement Inequality Schwarz Symmetrization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Beckner, Inequalities in Fourier analysis, Ann. of Math. 102 (1975), 159–182.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    L. Leindler, On a certain converse of Hölder’s inequality, In “Linear Operators and Approximation,” Proceedings of the 1971 Oberwolfach Conference, Birkhäuser Verlag, Basel-Stuttgart, 1972.Google Scholar
  3. 3.
    A. Prékopa, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. Szeged 32 (1971), 301–315.MathSciNetzbMATHGoogle Scholar
  4. 4.
    L. Leindler, On a certain converse of Hölder’s inequality. II, Acta Sci. Math. Szeged 33 (1972), 217–223.MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. Prékopa, On logarithmic measures and functions, Acta Sci. Math. Szeged 34 (1973), 335–343.MathSciNetzbMATHGoogle Scholar
  6. 6.
    G.E. Hardy, J.E. Littlewood, and G. Pólya, “Inequalities,” Cambridge University Press, London and New York, 1952.zbMATHGoogle Scholar
  7. 7.
    F. Riesz, Sur une Inéqualité Intégrale, J. L.M.S. 5 (1930), 162–168.zbMATHGoogle Scholar
  8. 8.
    S. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.) 4 (1938), 471–497; Amer. Math. Soc. Transi. 34, 2 (1963), 39-68.zbMATHGoogle Scholar
  9. 9.
    H. J. Brascamp, E. H., Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227–237.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    P. R. Chernoff, Advanced problems and solutions, Amer. Math. Monthly 81 (1974), 1038–1039.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Rinott, Thesis, Tel Aviv, 1973.Google Scholar
  12. 12.
    H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures and the long range order of the one-dimensional plasma, in “Functional Integration and Its Applications” (A. M. Arthurs, Ed.), Clarendon, Oxford, 1975.Google Scholar
  13. 13.
    E. Nelson, The free Markoff field, J. Funct. Anal. 12 (1973), 211–227zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herm Jan Brascamp
    • 1
  • Elliott H. Lieb
    • 2
  1. 1.Department of PhysicsPrinceton UniversityPrinceton
  2. 2.Department of Mathematics and PhysicsPrinceton UniversityPrinceton

Personalised recommendations