Advertisement

Inequalities pp 359-365 | Cite as

Proof of an Entropy Conjecture of Wehrl

  • Elliott H. Lieb

Abstract

Wehrl has proposed a new definition of classical entropy, S, in terms of coherent states and conjectured that s≧ 1. A proof of this is given. We discuss the analogous problem for Bloch coherent spin states, but in this case the conjecture is still open. An inequality for the entropy of convolutions is also given.

Keywords

Coherent State Quantum Entropy Finite Dimensional Vector Space Classical Entropy Entire Analytic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wehrl, A.: On the relation between classical and quantum-mechanical entropy. Rept. Math. Phys.Google Scholar
  2. 2.
    Schrödinger, E.: Naturwissenschaften 14, 664–666 (1926)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bargmann, V.: Commun. Pure Appl. Math. 14, 187–214 (1961); 20, 1-101 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Klauder, J.R.: Ann. Phys. (N.Y.) 11, 123 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Glauber, R.J.: Phys. Rev. 131, 2766 (1963)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lieb, E.H.: Bull. Am. Math. Soc. 81, 1–13 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Beckner, W.: Ann. Math. 102, 159–182 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Brascamp, H.J., Lieb, E.H.: Advan. Math. 20, 151–173 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Radcliffe, J.M.: J. Phys. A 4, 313–323 (1971)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kutzner, J.: Phys. Lett. A 41, 475–476 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Atkins, P.W., Dobson, J.C.: Proc. Roy. Soc. (London) A321, 321–340 (1971)MathSciNetGoogle Scholar
  12. 12.
    Arrechi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Phys. Rev. A6, 2211–2237 (1972)Google Scholar
  13. 13.
    Lieb, E.H.: Commun, math. Phys. 31, 327–340 (1973)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations